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Maximally decimated filter banks have been extensively studied in the past. A
filter bank is said to be under-decimated if the number of channels is more than the
decimation ratio in the subbands. A maximally decimated filter bank is well known
for its application in subband coding. Another application of maximally decimated
filter banks is in block filtering. Convolution through block filtering has the advan-
tages that parallelism is increased and data are processed at a lower rate. However,
the computational complexity is comparable to that of direct convolution. More
recently, another type of filter bank convolver has been developed. In this scheme,
the convolution is performed in the subbands. Quantization and bit allocation of
subband signals are based on signal variance, as in subband coding. Consequently,
for a fixed rate, the result of convolution is more accurate than is direct convolu-
tion. This type of filter bank convolver also enjoys the advantages of block filtering,
parallelism, and a lower working rate. Nevertheless, like block filtering, there is no
computational saving.

In this article, under-decimated systems are introduced to solve the problem.
The new system is decimated only by half the number of channels. Two types
of filter banks can be used in the under-decimated system: the discrete Fourier
transform (DFT) filter banks and the cosine modulated filter banks. They are well
known for their low complexity. In both cases, the system is approximately alias
free, and the overall response is equivalent to a tunable multilevel filter. Properties
of the DFT filter banks and the cosine modulated filter banks can be exploited
to simultaneously achieve parallelism, computational saving, and a lower working
rate. Furthermore, for both systems, the implementation cost of the analysis or syn-
thesis bank is comparable to that of one prototype filter plus some low-complexity
modulation matrices. The individual analysis and synthesis filters have complex co-
efficients in the DFT filter banks but have real coefficients in the cosine modulated
filter banks.

I. Introduction

The M channel maximally decimated filter bank shown in Fig. 1 has been studied extensively in
[1–8]. A filter bank is said to be under-decimated if the number of channels is more than the decimation
ratio in the subbands. When the system in Fig. 1 is alias free, it is a linear time invariant system with
transfer function T (z), as indicated in Fig. 1. In the following discussion, T (z) will be called the distortion
function, or the overall response.

A maximally decimated filter bank is well known for its application in subband coding. Another
application of maximally decimated filter banks is in block filtering [9]. Convolution through block
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filtering has the advantages that parallelism is increased and data are processed at a lower rate. However,
the computational complexity is comparable to that in direct convolution. In [10], filter banks are used to
map long convolutions into smaller ones in the subbands. Computations are then performed in parallel
at a lower rate.

Fig. 1.  The M–channel maximally decimated filter bank.
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More recently [8], another type of filter bank convolver has been developed. In this scheme, the
convolution is performed in the subbands. Quantization and bit allocation of subband signals are based
on signal variance as in subband coding. Consequently, for a fixed rate, the result of convolution is
more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages
of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no
computational saving.

In this article, under-decimated systems are introduced to solve the problem. Figure 2 shows the
setup of the under-decimated system; it has 2M channels but is decimated only by M . Two types of
filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks
and the cosine modulated filter banks. They are recognized for their low complexity. In both cases, the
system is approximately alias free and the overall response T (z) is equivalent to a tunable multilevel
filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to
simultaneously achieve parallelism, computational saving, and a lower working rate. Furthermore, for
both systems, the implementation cost of the analysis bank or the synthesis bank is comparable to
that of one prototype filter plus some low complexity modulation matrices. The individual analysis and
synthesis filters have complex coefficients in the DFT filter banks but have real coefficients in the cosine
modulated filter banks.

This work is organized as follows: Section II is devoted to the construction of the new 2M -channel
under-decimated DFT filter bank. Suppression of alias error due to decimation in the subbands is elab-
orated, and implementation and complexity of this DFT filter bank are discussed therein. The new
2M -channel cosine modulated filter bank is discussed in a similar manner in Section III. In the cosine
modulated system, filters are real-coefficient and hence have positive and negative spectral occupancy.
As a result, alias error in this case is more complicated than in DFT filter banks and requires careful
treatment. Also in Section III, we study different types of spectral configuration for the under-decimated
cosine modulated filter banks. Design examples are given in Section IV.

In this article, the following conventions are used:
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(1) Bold faced lower-case letters are used to represent vectors, and bold faced upper-case
letters are used to represent matrices.

(2) The notations AT , A∗, and A† represent the transpose, conjugate, and transpose con-
jugate of A, respectively. The “tilde” notation is defined as follows: Ã(z) = A†(1/z∗).

(3) Matrix Ik denotes a k × k identity matrix, and Jk denotes a k × k reversal matrix with

Jk =


0 · · · 0 1
0 · · · 1 0
...

...
...

1 · · · 0 0


(4) The delay chain ek(z) is the vector ek(z) =

[
1 z−1 · · · z−(k−1)

]T
.

(5) The unit pulse, denoted as δ(n), is defined according to

δ(n) =
{ 1 n = 0,

0 otherwise

(6) The value of the function bxc is the largest integer less or equal to x.

(7) The 2M × 2M DFT matrix, W, is defined such that [W]mn = Wmn. The quantity W
is given by W = e−jπ/M , where j =

√
−1.

(8) A filter H(z) is called a Nyquist (M) filter if its impulse response h(n) satisfies h(Mn) =
cδ(n), for some constant c.

Fig. 2.   A 2M–channel under-decimated filter bank.
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II. DFT Filter Banks and Their Application in Tunable Multilevel Filtering

The system in Fig. 2 is called a DFT filter bank if the analysis filters are shifted versions of the same
prototype. The same holds for the synthesis bank. The prototype of the analysis bank and the prototype
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of the synthesis bank need not be the same. To be more specific, let P0(z) be the prototype filter of
the analysis bank and Q0(z) be the prototype filter of the synthesis bank. The filters Pk(z) and Qk(z),
k = 1, 2, · · · , 2M − 1, are, respectively, the shifted versions of P0(z) and Q0(z).

Pk(z) = P0(zW k), Qk(z) = Q0(zW k), k = −M,−M + 1, · · · ,M − 1

Notice that unit circle Pk(z) is only a shift of P0(z) by kπ/M , since Pk(ejω) = P0(ej(ω−kπ/M)). Figure 3
shows this relationship. The analysis filters and synthesis filters of the DFT filter bank have the following
form:

Hk(z) = akP0(zW k), and Fk(z) = a∗kQ0(zW k), W = e−jπ/M (1)

Fig. 3.  Magnitude responses of Pk (z).  
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(The definition of a DFT filter bank here is slightly different from the conventional DFT filter banks [7].)
It follows that Hk(ejω) is just a shift of P0(ejω) by kπ/M except for a scalar. The same holds for the
synthesis filters.

We now show that with proper design of the two prototypes, this DFT filter is approximately alias
free and the overall response is equivalent to a tunable multilevel filter. Moreover, the overall response
can be a real-coefficient linear-phase filter as desired. Efficient implementation of the DFT filter bank
will also be discussed.

A. Suppression of Aliasing Error

Consider the under-decimated system in Fig. 2, a 2M -channel filter bank with decimation ratio M .
The suppression of aliasing error due to downsampling in the subbands can be explained pictorially. Take
the first subband as an example. Because of decimation followed by expansion, there will be M −1 image
copies of H0(z), as shown in Fig. 4. We can see from Fig. 4 that these image copies will be suppressed
if both H0(z) and F0(z) have stop-band edges less than π/M . When the spectral supports of F0(z) and
the image copy of H0(z) do not overlap, the aliasing error will be suppressed to the level of the stop-band
attenuation of H0(z) or F0(z), which is equivalent to the stop-band attenuation of P0(z) or Q0(z). In the
other subbands, the same reasoning for aliasing suppression applies.

We now present the mathematical counterpart of the above discussion. The output X̂(z) is related to
the input X(z) by

X̂(z) =
M−1∑
i=0

Ai(z)X(zW 2i) (2)

The alias transfer function, Ai(z), is defined as
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Fig. 4.  Image copies of H0 (z) due to decimation followed by expansion and the spectral support of F0 (z).  
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Ai(z) =
1
M

2M−1∑
k=0

Hk(zW 2i)Fk(z) (3)

The system in Fig. 2 is alias free if Ai(z) = 0 for i = 1, 2, · · · ,M−1. With analysis filters and synthesis
filters chosen as in Eq. (1), Ai(z) can be written as

Ai(z) =
1
M

2M−1∑
k=0

|ak|2P0(zW 2i+k)Q0(zW k) (4)

Assume the nonadjacent bands of P0(z) and Q0(z) do not overlap, i.e.,

P0(ejωW 2i)Q0(ejω) ≈ 0, i = 1, · · · ,M − 1 (5)

This assumption is reasonable if P0(z) and Q0(z) have stop-band edges less than π/M and large enough
stop-band attenuation. Equation (5) gives us

Hk(zW 2i)Fk(z) ≈ 0, k = 0, 1, · · · , 2M − 1, i = 1, 2, · · · ,M − 1

which implies Ai(z) ≈ 0, i 6= 0. We conclude that the DFT filter bank is almost alias free. Also notice
that the degree of alias suppression improves with the stop-band attenuation of the two prototypes.

B. The Overall Response of the DFT Filter Bank

For a 2M -channel system decimated by M as shown in Fig. 2, the distortion function T (z) can be
expressed as [7]

T (z) =
1
M

2M−1∑
k=0

Hk(z)Fk(z) (6)

Let R0(z) = P0(z)Q0(z). Substitute the expression of Hk(z) and Fk(z) in Eq. (1); then

T (ejω) =
1
M

2M−1∑
k=0

|ak|2R0(ej(ω−kπ/M)) (7)
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When R0(z) is a Nyquist (2M) filter, it can be shown the addition of |ak|2R0(ej(ω−kπ/M)) in Eq. (7) will
not result in any bumps or dips in the response of T (z) because of the Nyquist property of R0(z). The
definition of a Nyquist filter is given in Section I. A detailed explanation can be found in [7].

With Eq. (7), we can plot a typical magnitude response of T (z), as in Fig. 5, which shows that the
overall response is equivalent to a multilevel filter. Since the value of ak can be chosen freely, T (z)
is actually a tunable multilevel filter. In particular, we can get lowpass filters with stop-band edges
adjustable in integer multiples of π/M .

Fig. 5.  A typical magnitude response of T(z), a multilevel filter.
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Remarks:

(1) If R0(z) is a real-coefficient filter and we choose ak = a2M−k to be some real number, k =
1, 2, · · · ,M , it can be verified that the resulting T (z) is also real-coefficient.

(2) Let R0(z) be linear phase with order Nr, a multiple of M . In this case, R0(zW k) is linear phase.
By Eq. (7), this implies that T (z) has linear phase.

Summarizing, we have shown that if R0(z) is Nyquist (2M) and Eq. (5) is valid, the DFT filter in
Fig. 2 is nearly alias free and the overall response is equivalent to a tunable multilevel filter.

C. Implementation of the DFT Filter Bank

There exists an efficient implementation for the DFT filter bank. To see this, express the prototype
P0(z) in polyphase representation, i.e.,

P0(z) =
2M−1∑
i=0

Ei(z2M )z−i (8)

where Ei(z) is the ith type 1 polyphase component of P0(z) [7]. The analysis filters can be rewritten as

Hk(z) = akP0(zW k) = ak

2M−1∑
i=0

Ei(z2M )W−kiz−i, k = 0, 1, · · · , 2M − 1 (9)

Let

h(z) = [H0(z) H1(z) · · · H2M−1(z)]T (10)
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The matrix representation of Eq. (9) is

h(z) =


a0 0 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · a2M−1

W∗


E0(z2M ) 0 · · · 0

0 E1(z2M ) · · · 0
...

...
. . .

...
0 0 · · · E2M−1(z2M )

 e2M (z) (11)

Observing Eq. (11), we can draw the polyphase implementation of the analysis bank as in Fig. 6. The
implementation cost is that of the prototype filter P0(z) plus a DFT matrix. The same holds for the
synthesis bank. The computational complexity of the analysis bank is comparable to that of the analysis
prototype filter plus one DFT matrix. Notice that all the computations involved in the filter bank are
performed after the M -fold decimators; lower rate and lower complexity are achieved at the same time.

a1

a2M–1

Fig. 6.  Efficient implementation of the analysis bank of the 2M–channel DFT filter bank. The DFT matrix, W, 
is of size 2M x 2M.
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III. Cosine Modulated Filter Banks and Application in Tunable Multilevel Filtering

In the DFT filter bank described in the previous section, the analysis and synthesis filters have complex
coefficients. If it is desirable for the individual filters to have real coefficients, then we can use the new
under-decimated cosine modulated filter bank to be discussed in this section.

The system in Fig. 2 is said to be a cosine modulated filter bank if all analysis and synthesis filters
are generated by cosine or sine modulation of one or two prototype filters. In this section, we introduce
two classes of new under-decimated cosine modulated filter banks. The systems are nearly alias free.
Aliasing error decreases as the stop-band attenuation of the prototype increases. Individual analysis and
synthesis filters have real coefficients. We can design the prototypes so that the overall response of the
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filter bank is a linear-phase multilevel filter. Furthermore, there exists efficient implementation of this
cosine modulated filter bank. The implementation cost of the analysis bank is that of the prototype filter
plus two DCT matrices (Appendix). The complexity of an M ×M DCT matrix is only of the order
M log(M) [11]. The same holds true for the synthesis bank. Two types of filter stacking can be applied
in the new under-decimated cosine modulated filter bank. In our discussion, a cosine modulated filter
bank will be identified as type 1 or type 2 according to the stacking of its analysis and synthesis filters.

A. Type 1 Cosine Modulated Filter Bank

1. Construction of the Type 1 Cosine Modulated Filter Bank. In the cosine modulated filter
bank, all analysis and synthesis filters have real coefficients. Each filter has positive and negative spectral
occupancy as opposed to single-sided spectral occupancy in the DFT filter bank. This incurs a problem
that we do not have in the DFT filter bank. Details and a proposed solution of this new problem will be
given below.

Let P0(z) and Q0(z) be respectively the prototype filters of the analysis bank and the synthesis bank.
The definitions of Pk(z) and Qk(z) are as in Section II. To get real-coefficient analysis and synthesis filters
from the prototypes, we can combine Pk(z) and P−k(z):

Hk(z) = akPk(z) + a∗kP−k(z), Fk(z) = bkQk(z) + b∗kQ−k(z), k = 1, 2, · · · ,M − 1

Since P0(z) and PM (z) are already real filters, we can directly choose

Hk(z) = 2akPk(z), Fk(z) = 2bkQk(z), k = 0 or M

Figure 7 shows the spectral supports of the analysis filters for the type 1 cosine modulated filter bank.
The stacking of the spectral supports of the synthesis filters is similar.

Fig. 7.  Normalized magnitude responses of the analysis filters of the type 1 cosine modulated filter bank.
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Aliasing error due to M -fold decimation in the 0th and the Mth subband can be suppressed on the
synthesis side as we did in the DFT filter bank. The situation in the other subbands is different because
now Hk(z) and Fk(z), k = 1, 2, · · · ,M − 1, are bandpass filters. Referring to Fig. 8, decimation by M
followed by expansion by M in the subbands will cause one image copy of Pk(z) to overlap completely
with Q−k(z), k = 1, 2, · · · ,M − 1. This type of aliasing error cannot be suppressed in the synthesis bank.

Our solution to this problem is to introduce a second subsystem that has exactly the same aliasing
error to cancel the existing one. Let the second subsystem have analysis filters H ′k(z) and synthesis filters
F ′k(z), k = 1, 2, · · · ,M − 1. To create the same aliasing error, the filters of the second subsystem are
required to have similar stacking as that of the first subsystem. In particular,

H ′k(z) = a′kPk(z) + a′∗k P−k(z), F ′k(z) = b′kQk(z) + b′∗k Q−k(z), k = 1, 2, · · · ,M − 1

The configuration of the analysis filters in the second subsystem is shown in Fig. 9. Notice that the
spectral occupancy of H0(z) and HM (z) are not covered in the second subsystem.
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Fig. 8.  Type 1 cosine modulated filter bank:  (a) image copies of Pk(z) due to decimation followed by 
expansion and (b) the spectral support of Fk(z).  
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Fig. 9.  Normalized magnitude responses of the analysis filters of the second subsystem 
in the type 1 cosine modulated filter bank.

The setup of the new system is now complete and is shown in Fig. 10. It is a connection of two
subsystems. The first subsystem has M + 1 channels, and the second subsystem has M − 1 channels.
The whole system is under-decimated; it has 2M channels but is decimated only by M . The analysis and
synthesis filters can be summarized as follows:

Fig. 10.  The setup for the type 1 under-decimated cosine modulated filter bank.
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Hk(z) = 2akPk(z),

Hk(z) = akPk(z) + a∗kP−k(z),

H ′k(z) = a′kPk(z) + a′∗k P−k(z),

Fk(z) = 2bkQk(z),

Fk(z) = bkQk(z) + b∗kQ−k(z),

F ′k(z) = b′kQk(z) + b′∗k Q−k(z),

k = 0,M

k = 1, 2, · · · ,M − 1

k = 1, 2, · · · ,M − 1

k = 0,M

k = 1, 2, · · · ,M − 1

k = 1, 2, · · · ,M − 1

(12)

The values of ak, a′k, bk, and b′k will be determined later.

In the following we show that with proper design of the prototypes and appropriate choices of ak, a′k,
bk, and b′k, this filter bank is almost alias free. The overall response of the type 1 cosine modulated filter
bank can be designed to be a linear-phase tunable multilevel filter.

2. Cancellation and Suppression of Aliasing Error. As we mentioned in the construction of
filters, the aliasing error in the 0th and the Mth subbands will be suppressed in the synthesis bank. Only
the subbands with bandpass filters require alias cancellation. The physical picture is as follows:

Consider the kth subband, 1 ≤ k ≤M −1. Due to decimation followed by expansion, Pk(z) has M −1
image copies and P−k(z) also has M − 1 image copies. The image copies of Pk(z) will be suppressed
by Qk(z) provided that both P0(z) and Q0(z) have stop-band edges less than π/M and large enough
stop-band attenuation. Of the M − 1 image copies of Pk(z), M − 2 of them are in the stop band of
Q−k(z) and, hence, will be suppressed by Q−k(z), as depicted in Fig. 8. However, one of the image copies
of Pk(z) will fall on top of the spectral support of Q−k(z). Only this image copy requires cancellation.
In the kth subband of the second subsystem, the same aliasing occurs. It can be shown that the aliasing
error of the second subsystem cancels that of the first subsystem if the values of ak, bk, a′k, and b′k are
chosen properly. Mathematical proof of this claim is as follows.

With filters constructed as in Eq. (12) and the expression of alias transfer functions in Eq. (3), we
have

Ai(z) =
1
M

(
A

(1)
i (z) +A

(2)
i (z) +A

(3)
i (z) +A

(4)
i (z)

)
(13)

where

A
(1)
i (z) = (a0b0 + a∗0b0)P0

(
zW 2i

)
Q0(z) +

M−1∑
k=1

(akbk + a′kb
′
k)Pk

(
zW 2i

)
Qk(z)

A
(2)
i (z) =

M−1∑
k=1

(a∗kbk + a′∗k b
′
k)P−k

(
zW 2i

)
Qk(z)

A
(3)
i (z) =

M−1∑
k=1

(akb∗k + a′kb
′∗
k )Pk

(
zW 2i

)
Q−k(z)
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A
(4)
i (z) = (a∗0b

∗
0 + a0b

∗
0)P0

(
zW 2i

)
Q0(z) +

M−1∑
k=1

(a∗kb
∗
k + a′∗k b

′∗
k )P−k

(
zW 2i

)
Q−k(z)

Assume P0(z) and Q0(z) satisfy Eq. (5). It follows that A(1)
i (z) ≈ 0 and A(4)

i (z) ≈ 0. Let ak, k = 0, · · · ,M
be real and choose

bk = ak, k = 0, · · · ,M

a′k = −jak, b′k = jak, k = 1, · · · ,M − 1
(14)

If ak, bk, a′k, and b′k are chosen as above, it can be verified that a∗kbk + a′∗k b
′
k = 0, which implies A(2)

i (z) =
A

(3)
i (z) = 0. So the condition Ai(z) ≈ 0 is ensured, provided that Eq. (5) is valid and ak, bk, a

′
k, and b′k

are chosen according to Eq. (14).

With Eq. (14), we can write down the time domain description of the analysis and synthesis filters for
the type 1 cosine modulated filter bank. Let p0(n) be the impulse response of P0(z) and q0(n) be the
impulse response of Q0(z).

hk(n) = 2akp0(n) cos (knπ/M),

h′k(z) = 2akp0(n) sin (knπ/M),

fk(z) = 2akq0(n) cos (knπ/M),

f ′k(n) = 2akq0(n) sin (knπ/M),

k = 0, 1, · · · ,M

k = 1, 2, · · · ,M − 1

k = 0, 1, · · · ,M

k = 1, 2, · · · ,M − 1

(15)

From the expression in Eq. (15), we can see that each individual filter is a sine or cosine modulation of
the prototype filters.

3. The Magnitude Response of the Overall Response T (z). Using Eqs. (12) and (6), we get

T
(
ejω
)

=
2
M

M∑
k=0

|ak|2
((
R0(ej(ω+kπ/M)

)
+R0

(
ej(ω−kπ/M)

))
(16)

The above expression for the overall response is similar to that in the case of DFT filter bank, Eq. (7). If
R0(z) is a Nyquist (2M) filter, this is a tunable multilevel filter bank like in a DFT filter bank.

4. The Phase of the Overall Response T (z). The overall response T (z) has linear phase provided
that R0(z) is linear phase and Nr, the order of R0(z), is an even multiple of M . The reason is given
below. The linear phase property of R0(z) entitles us to write

R0

(
ejω
)

= e−jωNr/2R(ω) (17)

where R(ω) is a real-valued function. Substitute Eq. (17) into Eq. (16) and we get
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T
(
ejω
)

=
4
M
e−jωNr/2

M∑
k=0

|ak|2
(
ejkπNr/2MR

(
ω − kπ
M

)
+ e−jkπNr/2MR

(
ω + kπ

M

))

which has linear phase when Nr is a multiple of 2M .

Notice that if Q0(z) is the time reversed version of P0(z), i.e., Q0(z) = z−Np P̃0(z), then Fk(z) and
F ′k(z) are the time-reversed version of Hk(z) and H ′k(z), respectively. With this choice of Q0(z), the
overall response is

T (z) =
z−Np

M

(
M∑
k=0

Hk(z)H̃k(z) +
M−1∑
k=1

H ′k(z)H̃ ′k(z)

)

In this case, the overall response has linear phase regardless of the order of R0(z).

5. The Phase of the Individual Analysis and Synthesis Filters. Let the prototype filter P0(z)
be linear phase. If the center of symmetry of p0(n) coincides with that of the sine or cosine functions that
modulate p0(n), then the resulting analysis filters also have linear phase. In the case of the type 1 cosine
modulated filter bank, the condition can be further reduced. It can be verified that if Np, the order of
P0(z), is a multiple of M , every analysis filter has linear phase. The same holds for the synthesis bank.

When Np is an even multiple of M , all the analysis filters in the second subsystem, H ′k(z), k =
1, 2, · · · ,M − 1, are found to have a null at zero frequency and π. We can also verify that as Np is an odd
multiple of M , the analysis filters Hk(ejω), k = 1, 2, · · · ,M − 1, have zeros at zero frequency and π. We
conclude that some M − 1 of the 2M analysis filters have zeros at zero frequency and π if the analysis
filters have linear phase. More on this property will be addressed when we present a similar result for the
type 2 cosine modulated filter bank.

Summarizing, we have shown that the filter bank in Fig. 10 is equivalent to a linear-phase tunable
multilevel filter if the following two conditions hold: (1) The nonadjacent bands of P0(z) and Q0(z) do not
overlap, [Eq. (5)], and (2) R0(z) is linear phase and close to a Nyquist (2M) filter. The implementation
cost of the analysis bank, as will be shown in the Appendix, is the prototype filter P0(z) plus two DCT
matrices. Complexity follows the buildup of the architecture; the computational cost of the analysis bank
is that of P0(z) plus two DCT matrices working at an M -fold decimated rate.

B. Type 2 Cosine Modulated Filter Bank

In Figs. 7 and 9, we show the configuration of the analysis filter for the type 1 under-decimated cosine
modulated filter bank. In the type 2 cosine modulated under-decimated filter bank, a different stacking of
filters is applied. We show the new setup in Fig. 11. The filter bank can still be conceived as a connection
of two subsystems, both with M channels. The spectral supports of the second set of analysis filters are
exactly the same as the spectral supports of the first set of analysis filters (Fig. 12). The same holds for
the synthesis bank. To be more specific, let P0(z) and Q0(z) be the two prototypes as before. Define

P̂k(z) = P0

(
zW k+0.5

)
and Q̂k(z) = Q0

(
zW k+0.5

)
, W = e−jπ/M
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Fig. 12. Normalzed magnitude responses of the analysis filters of the type 2 
cosine modulated filter bank.
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Fig. 11.  The setup for the type 2 under-decimated cosine modulated filter bank.
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Spectral support of P̂k(z) is shown in Fig. 13. It is similar for Q̂k(z). Notice the difference between
the definition of P̂k(z) and the definition of Pk(z) in the type 1 cosine modulated filter bank, Fig. 3; if the
type 1 system and the type 2 system have the same analysis prototype, then there is on the unit circle
P ′k(z) a shift of Pk(z) by π/2M , and this comes from the extra W 0.5 in the preceding equation.

Fig. 13.  Magnitude responses of Pk(z).
^

π/M kπ/M0 2π/M
ω

|P0(e 
jω)|

^

(k+1)π/M

|P1(e 
jω)|

^
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jω)|
^

We choose the analysis and synthesis filters, similar to the construction of the type 1 system, as follows:
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Hk(z) = akP̂k(z) + a∗kP̂−k(z),

H ′k(z) = −j
(
akP̂k(z)− a∗kP̂−k(z)

)
,

Fk(z) = bkQ̂k(z) + b∗kQ̂−k(z),

F ′k(z) = j
(
bkQ̂k(z)− b∗kQ̂−k(z)

)
,

k = 0, 1, · · · ,M − 1

k = 0, 1, · · · ,M − 1

k = 0, 1, · · · ,M − 1

k = 0, 1, · · · ,M − 1

(18)

In this case, we found that the overall response is still equivalent to a tunable multilevel filter, and the
argument of alias cancellation continues to hold after minor adjustments. More details are given below.
The implementation cost and the computational complexity are the same as for the type 1 system. This
can be proved in a manner similar to that used for the type 1 system in the Appendix.

1. Cancellation and Suppression of Aliasing Error. The cancellation and suppression of alias-
ing error is very similar to that of the type 1 cosine modulated filter bank. The image copies of P̂k(z),
Fig. 14(a), can suppressed by Q̂k(z), provided that P0(z) and Q0(z) have large enough stop-band atten-
uation and their nonadjacent bands do not overlap. We can see from Fig. 14(a) that two image copies
of P̂k(z) overlap with Q̂−k(z). Figure 14(b) shows the resulting aliasing that cannot be suppressed by
the synthesis filters. As in the type 1 case, the second subsystem contributes another alias term, which
can be used to cancel the alias from the first subsystem. This can be verified by directly substituting the
analysis and synthesis filter in Eq. (18) into the definition of alias transfer functions in Eq. (3).

^

^
Fig. 14.  Type 2 cosine modulated filter bank:  (a) image copies of Pk (z) due to decimation followed by expansion 

and the spectral support of Fk (z) and (b) residual alias component that cannot be suppressed by Qk (z).
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2. The Magnitude Response of the Overall Response T (z). The overall response T (z) in the
type 2 cosine modulated filter bank can still be expressed in a form similar to that in the type 1 case.
Let R0(z) be defined as before, that is, R0(z) = P0(z)Q0(z). With analysis and synthesis filters chosen
as in Eq. (18), the overall response is
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T (z) =
2
M

M−1∑
k=−M

|ak|2R0

(
ej(ω−π(k+0.5)/M)

)

As in the DFT filter bank, the magnitude response of T (z) will resemble that of a multilevel filter if R0(z)
is a Nyquist (2M) filter or close to a Nyquist (2M) filter. Again, we can tune the values of ak as desired;
the overall response is actually a tunable multilevel filter.

3. The Phase Response of the Overall Response T (z). In the type 1 cosine modulated filter
bank, the phase of T (z) is linear if R0(z) is linear phase and Nr, the order of R0(z), is an even multiple
of M . It is still true in the type 2 system. We can verify this by following the same steps as in the type
1 case.

4. The Phase Responses of the Individual Filters. Each analysis filter in the type 1 cosine
modulated filter bank has linear phase if P0(z) has linear phase and Np, the order of P0(z), is an even
multiple of M . The same holds for the synthesis bank. This is still true in the type 2 case. However,
the type 2 system is found to have the following two additional properties when the individual filters are
linear-phase:

(i) The filters H ′0(z) and F ′0(z) have zeros at zero frequency, i.e., H ′0
(
ej0
)

= F ′0
(
ej0
)

= 0.
The highpass filters H ′M−1(z) and F ′M−1(z) have zeros at π.

(ii) Either H0(z) or F0(z) has a bump at zero frequency and either HM−1(z) or FM−1(z)
has a bump at π.

Property (i): Let P0(z) be linear phase and a0 be real. Referring to the construction of filters in
Eq. (18), the impulse responses of Hk(z) and H ′k(z) are, respectively, hk(n) and h′k(n):

hk(n) = 2a0p0(n) cos
(
π(k + 0.5)

n

M

)

h′k(n) = 2a0p0(n) sin
(
π(k + 0.5)

n

M

)
Their time reversed versions are

hk(Np − n) = 2a0p0(n) cos
(
π(k + 0.5)

n

M
− π(k + 0.5)

Nr

M

)

h′k(Np − n) = − 2a0p0(n) sin
(
π(k + 0.5)

n

M
− π(k + 0.5)

Nr

M

)

For the above two filters to have linear phase, Nr is necessarily a multiple of 2M . If Nr is an even multiple
of 2M , then hk(n) = hk(Np − n) and h′k(n) = −h′k(Np − n). When Nr is an odd multiple of 2M , Hk(z)
becomes odd symmetric and H ′k(z) becomes even symmetric. Without loss generality, we can assume
that Nr is an even multiple of 2M .

Notice that an even Np, h′k(n) = −h′k(Np − n) implies that H ′k(ej0) = H ′k(ejπ) = 0 [7]. In particular,
the lowpass filter H ′0(z) has a notch at zero frequency, and the highpass filter H ′M−1(z) has a notch at π.

119



         
The other filters, H ′k(z), k = 1, 2, · · · ,M − 2, are all bandpass filters; zeros at zero frequency do not have
a significant effect on their shapes. The same holds true for the synthesis bank.

In the type 1 cosine modulated filter bank, we obtained similar results. In that case, when the analysis
filters have linear phase, some M − 1 of them have zeros at zero frequency and π. But those are all
bandpass filters; zeros at zero frequency and π are not of particular importance.

Property (ii): For the flatness of the passband of T (z), R0(z) is required to be a Nyquist (2M) filter
or close to a Nyquist (2M) filter, as we have discussed previously. The Nyquist property of R0(z) ensures
that

M−1∑
k=−M

R
(
ejωW k+0.5

)
= c

for some constant c. Without loss of generality, we can consider c = 1. At zero frequency, only the term
k = −1 and the term k = 0 contribute significantly, so

R0

(
ejπ/2M

)
+R0

(
e−jπ/2M

)
≈ 1 (19)

Since R0(z) is a real filter, we have

|R0

(
ejπ/2M

)
| = |R0

(
e−jπ/2M

)
| (20)

Combining Eqs. (19) and (20) leads to |R0

(
ejπ/2M

)
| ≥ 0.5, i.e., |P0

(
ejπ/2M

)
Q0

(
ejπ/2M

)
| ≥ 0.5. This in

turn implies |P0

(
ejπ/2M

)
| ≥
√

0.5 or |Q0

(
ejπ/2M

)
| ≥
√

0.5. Suppose |P0

(
ejπ/2M

)
| ≥
√

0.5. Moreover,
by the linear phase property of P0(z), we can write P0

(
ejω
)

= e−jωNp/2P (ω), where P (ω) is a real-valued
function. With this expression, H0

(
ej0
)

becomes

H0

(
ej0
)

= e−jωNp
(
ejNpπ/4MP

−π
2M

+ e−jNpπ/4MP
π

2M

)

From the discussion of property (i), we know Np is an even multiple of 2M . This gives us

|H0

(
ej0
)
| = 2|P π

2M
| ≥
√

2

This means that H0(z) has a bump of about 3 dB at zero frequency. If we assume |Q0

(
ejπ/2M

)
| ≥
√

0.5,
then F0(z) will have a bump of about 3 dB at zero frequency. The filters HM−1(z) and FM−1(z) are shifts
of H0(z) and F0(z) by π; if either H0(z) or F0(z) has a bump at zero frequency, then either HM−1(z) or
FM−1(z) has a bump at zero frequency.

In the above derivation, we assume ak is a real number. The readers will find that for complex ak,
properties (i) and (ii) continue to hold after minor adjustments of the above argument.

It is noteworthy that the null of H ′0(z) and F ′0(z) at zero frequency and the bump of H0(z) or F0(z)
at zero frequency do not affect the overall response. The overall response is a summation of responses of
the first subsystem and the second subsystem. The bump from the first subsystem compensates for the
null of the second subsystem to ensure the flatness of the overall response T (z).
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IV. Design Procedures

We now discuss four techniques for designing P0(z) and Q0(z). The resulting R0(z) = P0(z)Q0(z) is
close to a Nyquist (2M) filter and, at the same time, the nonadjacent bands of P0(z) and Q0(z) do not
overlap, i.e., P0(z) and Q0(z) satisfy Eq. (5). The prototypes P0(z) and Q0(z) designed by these methods
can be applied to both the DFT filter banks and the two classes of cosine modulated filter banks.

A. Eigenfilter Design

The basic idea of this method is the following. Let P0(z) be a lowpass filter with a stop-band edge
less than π/M . (Any lowpass filter design technique can be used for designing P0(z).) First we find
the condition for Q0(z) such that the product R0(z) = P0(z)Q0(z) is Nyquist (2M). Then we use an
eigenfilter design and incorporate this condition to design Q0(z) [7]. The condition is derived below.

Let Nr, Np, and Nq be, respectively, the orders of R0(z), P0(z), and Q0(z). Let the impulse responses
of R0(z), P0(z), and Q0(z) be r0(n), p0(n) and q0(n), respectively. Then r0(n) is the convolution of p0(n)
and q0(n), i.e.,

r0(n) =
Nq∑
m=0

p0(n−m)q0(m) (21)

Given p0(n), we want to constrain q0(n) so that r0(n) is a Nyquist (2M) filter. In this case, q0(n) must
satisfy

Nq∑
m=0

p0(2Mn−m)q0(m) = cδ(n− n0) (22)

for some n0 and c. Constant c is a scalar factor; we can consider c = 1. The equivalent of Eq. (22) in
matrix form is

r = Pq (23)

where r is a (b(Np +Nq)/2Mc+ 1)× 1 column vector with the n0th entry equal to 1 and all others equal
to 0, P is a (b(Np +Nq)/2Mc+ 1)× (Nq + 1) matrix with

[P]mn =
{
p0(2Mm− n+ 1), if 2Mm− n+ 1 ≥ 0
0, otherwise

and q = [q0(0) q0(1) · · · q0(Nq)]T .

The condition in Eq. (23) can be easily incorporated in the eigenfilter approach [7].

B. A Shortcut Design

Let P0(z) be a Nyquist (2M) lowpass filter with zero phase. Let Q0(z) also be zero phase with its
passband covering P0(z) as depicted in Fig. 15, i.e., Q0(ejω) ≈ 1 in the passband and the transition band
of P0(ejω). Because R0(z) differs from P0(z) only in the stop band where the magnitude of P0(z) is small,
we have
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Fig. 15.  The passband of Q0(z) covers the passband and transition band of P0(z).

0
ω

   π/M  —π/M

Q0(z)

P0(z)

R0(z) ≈ P0(z) (24)

In this case, R0(z) will still be close to a Nyquist (2M) lowpass filter.

In the above discussion, P0(z) and Q0(z) are zero phase and, hence, noncausal. Some delays can be
added to make the filter bank causal, since both prototypes are FIR. In the two following methods, the
synthesis prototype Q0(z) is chosen as the time-reversed version of P0(z), i.e., Q0(z) = z−Np P̃0(z), where
Np is the order of P0(z).

C. Nonlinear Optimization of P0(z)

The filter coefficients of P0(z) can be directly optimized to minimize the stop-band energy of P0(z)
subject to the Nyquist condition in Eq. (22). The stop-band energy of P0(z) is

φs =
∫ π

(π/2M)+ε

|P0

(
ejω
)
|2dω

But with Q0(z) = z−NpP0(z), the right-hand side of Eq. (22) becomes a quadratic form of p0(n). To
minimize φs, we need a nonlinear optimization package that can incorporate nonlinear constraints. The
detail of this design technique is documented in [12].

Instead of optimizing the coefficients of P0(z) with nonlinear constraints, we can use a objective
function to reflect how close R0(z) is to a Nyquist (2M) filter. A possible objective function is

φp =
∫ π/M

0

(
|P0

(
ejω
)
|2 + |P0

(
ej(ω−(π/M))

)
|2 − 1

)2

dω

Combining both φs and φp, let

φ = αφp + (1− α)φs

where 0 < α < 1. The new objective function φ can be minimized using the usual nonlinear optimization
programs (e.g., [13]) without any constraints.

D. Kaiser Window Design

In this approach, P0(z) is a lowpass filter with an even order obtained through Kaiser window design.
That is,

p0(n) =
sin(ωcn)
πn

w(n)
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where w(n) is a Kaiser window [7]. After we choose the stop-band attenuation and the width of the
transition band, the length of the window can be estimated by a formula developed by Kaiser. In this
case, the window is completely determined [7]. The cutoff frequency ωc of the ideal filter is the only free
parameter left for the design of P0(z).

According to Eq. (22), we choose a simple objective function, φKaiser, to reflect the closeness of R0(z)
to a Nyquist (2M) filter:

φKaiser = max
n
|r0(2Mn)− δ(n− n0)|

Experiments show that φKaiser is a convex function of ωc; we can adjust the parameter ωc to find the
best P0(z), which yields the smallest φKaiser. Design examples will be given in the next section.

E. Comparison of the Four Design Methods

Of all the four approaches stated above, the shortcut design and the Kaiser window design are probably
the easiest. In the shortcut design approach, we only need to design two lowpass filters with certain
specifications described above. In the Kaiser window design, only the parameter ωc needs to be optimized,
yet no nonlinear optimization is involved. Also, the value of the objective function φKaiser at a given ωc
can be computed easily.

V. Design Example

We now present one design example of the under-decimated system. The type 1 cosine modulated filter
bank is used in this example. The Kaiser window approach is adopted for the design of the prototype
filter.

Example 1: Tunable Multilevel Filter. The system has 20 channels. In this case, M = 10. The
analysis bank prototype filter P0(z) is linear phase with order Np = 120, stop-band attenuation 85 dB,
passband edge ωp = 0.04π, and stop-band edge ωs = 0.099π. The synthesis bank prototype Q0(z) is
chosen as the time-reversed version of P0(z). As elaborated in Section III, the resulting overall response
will have linear phase. Figure 16(a) shows the magnitude response of P0(z). The normalized magnitude
responses of the analysis filters are shown in Fig. 16(b) and (c). The synthesis filters are time-reversed
versions of the analysis filters; the magnitude responses of the synthesis filters are the same as those of
analysis filters.

After designing the prototype filters, the values of ak can be changed freely to obtain the desired
overall response, T (z). For instance, we set a0 = a1 = 1, a2 = a3 = a4 = 0, a5 = a6 = a7 = 0.7, and
a8 = a9 = a10 = 0.3. The magnitude response of the resulting T (z) is plotted in Fig. 16(b). Since T (z)
has linear phase, we did not show the phase response. The corresponding dB plot of Fig. 16(d) is shown
in Fig. 16(e).
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Fig. 16.  Example: (a) the magnitude response of the prototype filter, P0(z), (b) the normalized magnitude 
responses of the analysis filters in the first subsystem, (c) the normalized magnitude responses of the 
analysis filters in the second subsystem, (d) the magnitude response of the overall response T(z), and (e) 
the magnitude response of the overall response T(z) in a dB plot.
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Appendix

Implementation of the Type 1 Cosine Modulated Filter Bank

In this appendix, we prove that the implementation cost of the analysis bank of the type 1 cosine
modulated filter bank is that of the analysis prototype filter plus two DCT matrices.

Let

P0(z) =
2M−1∑
n=0

Gn
(
z2M

)
z−n

where Gn(z) is the nth type 1 polyphase component of P0(z). Then
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Pk(z) =
2M−1∑
n=0

Gn
(
z2M

)
z−nW−kn (A-1)

Rewriting analysis filters in Eq. (13) in terms of the polyphase components of P0(z) with ak, bk, a
′
k, and

b′k as in Eq. (15), we obtain

Hk(z) = 2
2M−1∑
n=0

akGn
(
z2M

)
z−n cos

( π
M
kn
)
, k = 0, 1, · · · ,M

H ′k(z) = 2
2M−1∑
n=0

akGn
(
z2M

)
z−n sin

( π
M
kn
)
, k = 1, 2, · · · ,M − 1 (A-2)

Define a 2M -component vector h(z) given by

h(z) =



H0(z)
...

HM (z)
H ′1(z)

...
H ′M−1(z)


Using Eq. (A-2), h(z) can be written as

h(z) = 2
(

A0 0
0 A1

)(
C Λ0C
S Λ1S

)(
g0(z2M ) 0

0 g1(z2M )

)(
e(z)

z−Me(z)

)
(A-3)

where gi(z), Λi, and Ai are diagonal matrices with

[g0(z)]kk = Gk(z), [g1(z)]kk = Gk+M (z), k = 0, 1, · · · ,M − 1 (A-4)

[Λ0]kk = (−1)k, k = 0, 1, · · · ,M

[Λ1]kk = (−1)k, k = 1, 2, · · · ,M − 1 (A-5)

[A0]kk = ak, k = 0, 1, · · · ,M

[A1]kk = ak, k = 1, 2, · · · ,M − 1 (A-6)

and C and S are (M + 1)×M and (M − 1)×M matrices with
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[C]mn = cos(
π

M
mn), m = 0, · · · ,M, n = 0, · · · ,M − 1

[S]mn = sin(
π

M
mn), m = 1, · · · ,M − 1, n = 0, · · · ,M − 1 (A-7)

Define two M × 2M matrices

T0 = (C Λ0C) and T1 = (S Λ1S)

From Eq. (A-3), we can draw Fig. A-1, a schematic implementation of the 2M channel cosine modulated
system. The input to T0 and T1, a(n), can be partitioned into two M × 1 vectors:

a(n) =
(

a0(n)
a1(n)

)

Their dependence on n will be dropped for convenience. As indicated in Fig. A-1, d0 and d1 are the
outputs of T0 and T1, respectively:

d0 = T0a and d1 = T1a

From the definitions of T0 and T1, we know

d0 = Ca0 + Λ0Ca1 and d1 = Sa0 + Λ1Sa1 (A-8)

In [14], it is pointed out that C and S have the following properties:

Fig. A-1.  A schematic for the implementation of the analysis bank of the 
type 1 under-decimated cosine modulated 2M-channel filter bank.       
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Λ0C = C
(

0 0
0 JM−1

)
+ r ( 1 0 · · · 0 ) and Λ1S = −S

(
0 0
0 JM−1

)

Using these relations, Eq. (A-8) becomes

d0 = C
(

a0 +
(

0 0
0 JM−1

)
a1

)
+ [a1]0 r, d1 = S

(
a0 −

(
0 0
0 JM−1

)
a1

)
(A-9)

where [a1]0 is the first element of a1, and r = [1 − 1 · · · (−1)M−1]T . Equation (A-9) allows us to have a
more clear idea of the implementation of T0 and T1. The implementation of the synthesis bank is similar
to the above.

Now we can draw a more detailed and complete picture for the implementation of the 2M channel
filter bank. For simplicity, we can choose the synthesis filters to be the time-reversed versions of the
corresponding analysis filters without the scalars ak. The efficient implementation of the filter bank is
shown in Fig. A-2. From Fig. A-2, we can see that the major complexity of the analysis bank is the cost
of the analysis prototype plus matrix C and matrix S. Matrices C and S can be implemented by fast
algorithms for DCT and DST matrices [11]. The process is similar for the synthesis bank.

Fig. A-2.  Efficient implementation of the type 1 under-decimated cosine modulated 2M-channel filter bank, 

where k = N – 2M + 1 and e0 = [1 0 . . . 0]T.
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