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Turbo codes were recently proposed by Berrou, Glavieux, and Thitimajshima
[2], and it has been claimed these codes achieve near-Shannon-limit error correction
performance with relatively simple component codes and large interleavers. A re-
quired Eb/No of 0.7 dB was reported for a bit error rate of 10−5, using a rate 1/2
turbo code [2]. However, some important details that are necessary to reproduce
these results were omitted. This article confirms the accuracy of these claims, and
presents a complete description of an encoder/decoder pair that could be suitable
for deep-space applications, where lower rate codes can be used. We describe a new
simple method for trellis termination, analyze the effect of interleaver choice on the
weight distribution of the code, and introduce the use of unequal rate component
codes, which yields better performance.

I. Introduction

Turbo codes were recently proposed by Berrou, Glavieux, and Thitimajshima [2] as a remarkable step
forward in high-gain, low-complexity coding. It has been claimed these codes achieve near-Shannon-limit
error correction performance with relatively simple component codes and large interleavers. A required
Eb/N0 of 0.7 dB was reported for a bit error rate (BER) of 10−5, using a rate 1/2 turbo code [2]. However,
some important details that are necessary to reproduce these results were omitted. The purpose of this
article is to shed some light on the accuracy of these claims and to present a complete description of an
encoder/decoder pair that could be suitable for deep-space applications, where lower rate codes can be
used. Two new contributions are reported in this article: a new, simple method for trellis termination
and the use of unequal component codes, which results in better performance.

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of two convolutional codes
with a random interleaver between the encoders. Figure 1 illustrates a particular example that will
be used in this article to verify the performance of these codes. The encoder contains two recursive
binary convolutional encoders, with M1 and M2 memory cells, respectively. In general, the two compo-
nent encoders may not be identical. The first component encoder operates directly on the information
bit sequence u = (u1, · · · , uN ) of length N , producing the two output sequences x1i and x1p. The
second component encoder operates on a reordered sequence of information bits, u′, produced by an
interleaver of length N , and outputs the two sequences x2i and x2p. The interleaver is a pseudorandom
block scrambler defined by a permutation of N elements with no repetitions: a complete block is read
into the interleaver and read out in a specified permuted order. Figure 1 shows an example where
a rate r = 1/n = 1/4 code is generated by two component codes with M1 = M2 = M = 4, producing the

29



         

D D D D

D D D D

N-BIT INTERLEAVER

u
x1i

ENCODER 1

ENCODER 2

x1p

x2p

x2iu´

Fig. 1.  Example of an encoder.

outputs x1i = u, x1p = u · ga/gb, x2i = u′, and x2p = u′ · ga/gb, where the generator polynomials ga and
gb have an octal representation of 21 and 37, respectively. Note that various code rates can be obtained
by puncturing the outputs.

A. Trellis Termination

We use the encoder in Fig. 1 to generate a (n(N +M), N) block code. Since the component encoders
are recursive, it is not sufficient to set the last M information bits to zero in order to drive the encoder
to the all-zero state, i.e., to terminate the trellis. The termination (tail) sequence depends on the state of
each component encoder after N bits, which makes it impossible to terminate both component encoders
with the same M bits. Fortunately, the simple stratagem illustrated in Fig. 2 is sufficient to terminate
the trellis. Here the switch is in position “A” for the first N clock cycles and is in position “B” for M
additional cycles, which will flush the encoders with zeros. The decoder does not assume knowledge of
the M tail bits. The same termination method can be used for unequal rate and memory encoders.
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Fig. 2.  Trellis termination.
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B. Weight Distribution

In order to estimate the performance of a code, it is necessary to have information about its minimum
distance, d, weight distribution, or actual code geometry, depending on the accuracy required for the
bounds or approximations. The example of turbo code shown in Fig. 1 produces two sets of codewords,
x1 = (x1i,x1p) and x2 = (x2i,x2p), whose weights can be easily computed. The challenge is in finding the
pairing of codewords from each set, induced by a particular interleaver. Intuitively, we would like to avoid
pairing low-weight codewords from one encoder with low-weight words from the other encoder. Many such
pairings can be avoided by proper design of the interleaver. However, if the encoders are not recursive,
the low-weight codeword generated by the input sequence u = (00 · · · 0000100 · · · 000) with a single “1”
will always appear again in the second encoder, for any choice of interleaver. This motivates the use of
recursive encoders, where the key ingredient is the recursiveness and not the fact that the encoders are
systematic. For our example using a recursive encoder, the input sequence u = (00 · · · 0010000100 · · · 000)
generates the minimum weight codeword (weight = 6). If the interleaver does not properly “break” this
input pattern, the resulting minimum distance will be 12.

However, the minimum distance is not the most important quantity of the code, except for its asymp-
totic performance, at very high Eb/No. At moderate signal-to-noise ratios (SNRs), the weight distribution
at the first several possible weights is necessary to compute the code performance. Estimating the com-
plete weight distribution for a large N is still an open problem for these codes. We have investigated the
effect of the interleaver on the weight distribution on a small-scale example where N = 16. This yields
an (80,16) code whose weight distribution can be found by exhaustive enumeration. Some of our results
are shown in Fig. 3(a), where it is apparent that a good choice of the interleaver can increase the mini-
mum distance from 12 to 14, and, more importantly, can reduce the count of codewords at low weights.
Figure 3(a) shows the weight distribution obtained by using no interleaver, a reverse permutation, and
a 4 × 4 block interleaver, all with d = 12. Better weight distributions are obtained by the “random”
permutation {2, 13, 0, 3, 11, 15, 6, 14, 8, 9, 10, 4, 12, 1, 7, 5} with d = 12, and by the best-found permutation
{12, 3, 14, 15, 13, 11, 1, 5, 6, 0, 9, 7, 4, 2, 10, 8} with d = 14. For comparison, the binomial distribution is also
shown. The best known (80,16) linear block code has a minimum distance of 28. For an interleaver length
of N = 1024, we were only able to enumerate all codewords produced by input sequences with weights
1, 2, and 3. This again confirmed the importance of the interleaver choice for reducing the number of
low-weight codewords. Better weight distributions were obtained by using “random” permutations than
by using structured permutations as block or reverse permutations.
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For the (80,16) code using the best-found permutation, we have compared the performance of a

maximum-likelihood decoder (obtained by simulation) to that of a turbo decoder with 10 iterations, as
described in Section 3, and to the union bound computed from the weight distribution, as shown in
Fig. 3(b). As expected, the performance of the turbo decoder is slightly suboptimum.

III. Turbo Decoding

Let uk be a binary random variable taking values in {+1,−1}, representing the sequence of informa-
tion bits. The maximum a posteriori (MAP) algorithm, summarized in the Appendix, provides the log
likelihood ratio L(k) given the received symbols y:

L(k) = log
P (uk = +1|y)
P (uk = −1|y)

(1)

The sign of L(k) is an estimate, ûk, of uk, and the magnitude |L(k)| is the reliability of this estimate, as
suggested in [3].

The channel model is shown in Fig. 4, where the n1ik’s and the n1pk’s are independent identically
distributed (i.i.d.) zero-mean Gaussian random variables with unit variance, and ρ =

√
2Es/No =√

2rEb/No is the SNR. A similar model applies for encoder 2.

ENCODER 1

ρ

ρ

n1p

y1i =ρ u + n1i

y1p =ρ x1p + n1p

u
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Fig. 4.  The channel model.
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Given the turbo code structure in Fig. 1, the optimum decoding rule maximizes either P (uk|y1,y2)
(minimum bit-error probability rule) or P (u|y1,y2) (maximum-likelihood sequence rule). Since this
rule is obviously too complex to compute, we resort to a suboptimum decoding rule [2,3] that sep-
arately uses the two observations y1 and y2, as shown in Fig. 5. Each decoder in Fig. 5 computes
the a posteriori probabilities P (uk|yi, ũi), i = 1, 2 see Fig. 6(a), or equivalently the log-likelihood ra-
tio Li(k) = log (P (uk = +1|yi, ũi)) / (P (uk = −1|yi, ũi)) where ũ1 is provided by decoder 2 and ũ2 is
provided by decoder 1 (see Fig. 6(b)). The quantities ũi correspond to “new data estimates,” “innova-
tions,” or “extrinsic information” provided by decoders 1 and 2, which can be used to generate a priori
probabilities on the information sequence u for branch metric computation in each decoder.

The question is how to generate the probabilities P (ũi,k|uk) that should be used for computa-
tion of the branch transition probabilities in MAP decoding. It can be shown that the probabilities
P (uk|ũi,k) or, equivalently, log (P (uk = +1|ũi,k)) / (P (uk = −1|ũi,k)), i = 1, 2 can be used instead of
P (ũi,k|uk) for branch metric computations in the decoders. When decoder 1 generates P (uk|ũ2,k) or
log (P (uk = +1|ũ2,k)) / (P (uk = −1|ũ2,k)) for decoder 2, this quantity should not include the contribu-
tion due to ũ1,k, which has already been generated by decoder 2. Thus, we should have

log
P (uk = +1|ũ2,k)
P (uk = −1|ũ2,k)

= log
P (uk = +1|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )
P (uk = −1|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )

(2)
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Fig. 5.  The turbo decoder.
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To compute log (P (uk = +1|ũ2,k)) / (P (uk = −1|ũ2,k)), we note [see Fig. 6(a)] that

P (uk|y1, ũ1) =

P (uk|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )P (ũ1,k|uk,y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )
P (ũ1,k|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )

(3)

Since ũ1,k was generated by decoder 2 and deinterleaving is used, this quantity depends only weakly on
y1 and ũ1,j , j 6= k. Thus, we can have the following approximation:

P (ũ1,k|uk,y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N ) ≈ P (ũ1,k|uk) = 2P (uk|ũ1,k)P (ũ1,k) (4)

Using Eq. (4) in Eq. (3), we obtain
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P (uk|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N ) =

P (uk|y1, ũ1)P (ũ1,k|y1, ũ1,1, · · · , ũ1,k−1, ũ1,k+1, · · · , ũ1,N )
2P (uk|ũ1,k)P (ũ1,k)

(5)

It is preferable to work with likelihood ratios to avoid computing probabilities not involving uk (see
Fig. 6(b)). Define

L̃i(k) = log
P (uk = +1|ũi,k)
P (uk = −1|ũi,k)

, i = 1, 2 (6)

From Eqs. (2) and (5), we obtain L̃
(m)
2 (k) = L

(m)
1 (k) − L̃(m−1)

1 (k) at the output of decoder 1, before
interleaving, for the mth iteration. Similarly, we can obtain L̃

(m)
1 (k) = L

(m)
2 (k)− L̃(m)

2 (k) at the output
of decoder 2, after deinterleaving. Using the above definitions, the a priori probabilities can be computed
as

P (uk = +1|ũi,k) =
eL̃i(k)

1 + eL̃i(k)
= 1− P (uk = −1|ũi,k), i = 1, 2 (7)

Then the update equation for the mth iteration of the decoder in Fig. 5 becomes

L̃
(m)
1 (k) = L̃

(m−1)
1 (k) + αm

[
L

(m)
2 (k)− L(m)

1 (k)
]
, αm = 1 (8)

This looks like the update equation of a steepest descent method, where
[
L

(m)
2 (k)− L(m)

1 (k)
]

represents
the rate of change of L(k) for a given uk, and αm is the step size.

Figure 7 shows the probability density function of L̃1(k) at the output of the second decoder in Fig. 1,
after deinterleaving and given uk = +1. As shown in Fig. 7, this density function shifts to the right as
the number of iterations, m, increases. The area under each density function to the left of the origin
represents the BER if decoding stops after m iterations.

At this point, certain observations can be made. Note that L̃2(k′) at the input of decoder 2 includes
an additive component 2ρy1ik, which contributes to the branch metric computations in decoder 2 at
observation y2ik. This improves by 3 dB the SNR of the noisy information symbols at the input of
decoder 2. Similar arguments hold for L̃1(k). An apparently more powerful decoding structure can be
considered, as shown in Fig. 8. However, the performances of the decoding structures in Figs. 8 and 5 are
equivalent for a large number of iterations (the actual difference is one-half iteration). If the structure in
Fig. 8 is used, then the log-likelihood ratio L̃2(k) fed to decoder 2 should not depend on ũ1k and y′1ik,
and, similarly, L̃1(k) should not depend on ũ2k and y′2ik. Using analogous derivations based on Eqs. (2)
through (5), we obtain

L̃2(k) = L1(k)− L̃1(k)− 2ρy′1ik

L̃1(k) = L2(k)− L̃2(k)− 2ρy′2ik

where y′1i is the sum of y1i with the deinterleaved version of y2i and y′2i is the sum of y2i with the
interleaved version of y1i. Thus, the net effect of the decoding structure in Fig. 8 is to explicitly pass to
decoder 2 the information contained in y1i (and vice versa), but to remove the identical term from the
input log-likelihood ratio.
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IV. Performance

The performance obtained by turbo decoding the code in Fig. 1 with random permutations of lengths
N = 4096 and N = 16384 is compared in Fig. 9 to the capacity of a binary-input Gaussian channel for
rate r = 1/4 and to the performance of a (15,1/4) convolutional code originally developed at JPL for
the Galileo mission. At BER = 5× 10−3, the turbo code is better than the (15,1/4) code by 0.25 dB for
N = 4096 and by 0.4 dB for N = 16384.

Fig. 9.  Turbo codes performance, r = 1/4.
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So far we have considered only component codes with identical rates, as shown in Fig. 1. Now we
propose to extend the results to encoders with unequal rates, as shown in Fig. 10. This structure improves
the performance of the overall rate 1/4 code, as shown in Fig. 9. The gains at BER = 5×10−3 relative to
the (15,1/4) code are 0.55 dB for N = 4096 and 0.7 dB for N = 16384. For both cases, the performance
is within 1 dB of the Shannon limit at BER = 5× 10−3, and the gap narrows to 0.7 dB for N = 16384
at a low BER.

V. Conclusions

We have shown how turbo codes and decoders can be used to improve the coding gain for deep-space
communications while decreasing the decoding complexity with respect to the large constraint-length
convolutional codes currently in use. These are just preliminary results that require extensive further
analysis. In particular, we need to improve our understanding of the influence of the interleaver choice
on the code performance, to explore the sensitivity of the decoder performance to the precision with
which we can estimate Eb/No, and to establish whether there might be a flattening of the performance
curves at higher Eb/No, as it appears in one of the curves in Fig. 9. An interesting theoretical question
is to determine how random these codes can be so as to draw conclusions on their performance based on
comparison with random coding bounds.
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In this article, we have explored turbo codes using only two encoders, but similar constructions can
be used to build multiple-encoder turbo codes and generalize the turbo decoding concept to a truly
distributed decoding system where each subdecoder works on a piece of the total observation and tentative
estimates are shared among decoders until an acceptable degree of consensus is reached.

Fig. 10.  The two-rate encoder.
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Appendix

The MAP Algorithm

Let uk be the information bit associated with the transition from time k − 1 to time k, and use s as
an index for the states. The MAP algorithm [1,4] provides the log likelihood given the received symbols
yk, as shown in Fig. A-1.

Fig. A-1.  The MAP algorithm.

MAP ALGORITHM
L (uk)

k = 1, ..., N

y

L(k) = log
P (uk = +1|y)
P (uk = −1|y)

= log
∑
s

∑
s′ γ+1(yk, s′, s)αk−1(s′)βk(s)∑

s

∑
s′ γ−1(yk, s′, s)αk−1(s′)βk(s)

(A-1)

The estimate of the transmitted bits is then given by sign[L(k)] and their reliability by |L(k)|. In order
to compute Eq. (A-1), we need the forward and backward recursions,

αk(s) =
∑
s′
∑
i=±1 γi(yk, s

′, s)αk−1(s′)∑
s

∑
s′
∑
j=±1 γj(yk, s′, s)αk−1(s′)

(A-2)

βk(s) =
∑
s′
∑
i=±1 γi(yk+1, s, s

′)βk+1(s′)∑
s

∑
s′
∑
j=±1 γj(yk+1, s′, s)αk(s′)

where
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γi(yk, s′, s) =

{
ηke

ρ
∑n

ν=1
yk,νxk,ν(s′,i) if transition s′ → s is allowable for uk = i

0 otherwise
(A-3)

ρ =
√

2(Es/N0), ηk = P (uk = ±1|ũk), except for the first iteration in the first decoder, where ηk = 1/2,
and xk,ν are code symbols. The operation of these recursions is shown in Fig. A-2. The evaluation of
Eq. (A-1) can be organized as follows:

Step 0: α0(0) = 1 α0(s) = 0, ∀s 6= 0

βN (0) = 1 βN (s) = 0, ∀s 6= 0

Step 1: Compute the γk’s using Eq. (A-3) for each received set of symbols yk.

Step 2: Compute the αk’s using Eq. (A-2) for k = 1, · · · , N .

Step 3: Use Eq. (A-2) and the results of Steps 1 and 2 to compute the βk’s for k = N, · · · , 1.

Step 4: Compute L(k) using Eq. (A-1) for k = 1, · · · , N .

Fig. A-2.  Forward and backward recursions.
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