

TDA Progress Report 42-121 May 15, 1995

Multiple Turbo Codes for Deep-Space
Communications

D. Divsalar and F. Pollara
Communications Systems Research Section

In this article, we introduce multiple turbo codes and a suitable decoder structure
derived from an approximation to the maximum a posteriori probability (MAP)
decision rule, which is substantially different from the decoder for two-code-based
encoders. We analyze the effect of interleaver choice on the weight distribution of
the code, and we describe simulation results on the improved performance of these
new codes.

I. Introduction

Coding theorists have traditionally attacked the problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible decoders, although coding theory suggests that codes
chosen “at random” should perform well if their block size is large enough. The challenge to find practical
decoders for “almost” random, large codes has not been seriously considered until recently. Perhaps the
most exciting and potentially important development in coding theory in recent years has been the
dramatic announcement of “turbo codes” by Berrou et al. in 1993 [1]. The announced performance of
these codes was so good that the initial reaction of the coding establishment was deep skepticism, but
recently researchers around the world have been able to reproduce those results [3,4]. The introduction
of turbo codes has opened a whole new way of looking at the problem of constructing good codes and
decoding them with low complexity.

It is claimed these codes achieve near-Shannon-limit error correction performance with relatively simple
component codes and large interleavers. A required Eb/No of 0.7 dB was reported for a bit error rate
(BER) of 10−5 [1]. However, some important details that are necessary to reproduce these results were
omitted. The purpose of this article is to shed some light on the accuracy of these claims and to extend
these results to multiple turbo codes with more than two component codes.

The original turbo decoder scheme, for two component codes, operates in serial mode. For multiple-
code turbo codes, we found that the decoder, based on the optimum maximum a posteriori (MAP) rule,
must operate in parallel mode, and we derived the appropriate metric, as illustrated in Section III.

II. Parallel Concatenation of Convolutional Codes

The codes considered in this article consist of the parallel concatenation of multiple convolutional
codes with random interleavers (permutations) at the input of each encoder. This extends the analysis
reported in [4], which considered turbo codes formed from just two constituent codes. Figure 1 illustrates

66

u
x1i

x1p

x2p

x3p

π2

D D

ENCODER 1

D D

ENCODER 2

D D

ENCODER 3

u3

u2

π3

Fig. 1. Example of encoder with three codes.

π1

a particular example that will be used in this article to verify the performance of these codes. The
encoder contains three recursive binary convolutional encoders, with M1, M2 and M3 memory cells,
respectively. In general, the three component encoders may not be identical and may not have identical
code rates. The first component encoder operates directly (or through π1) on the information bit sequence
u = (u1, · · · , uN) of length N , producing the two output sequences x1i and x1p. The second component
encoder operates on a reordered sequence of information bits, u2, produced by an interleaver, π2, of
lengthN , and outputs the sequence x2p. Similarly, subsequent component encoders operate on a reordered
sequence of information bits, uj , produced by interleaver πj , and output the sequence xjp. The interleaver
is a pseudorandom block scrambler defined by a permutation of N elements with no repetitions: A
complete block is read into the the interleaver and read out in a specified (fixed) random order. The
same interleaver is used repeatedly for all subsequent blocks. Figure 1 shows an example where a rate
r = 1/n = 1/4 code is generated by three component codes with M1 = M2 = M3 = M = 2, producing
the outputs x1i = u, x1p = u · gb/ga, x2p = u2 · gb/ga, and x3p = u3 · gb/ga (here π1 is assumed to be
an identity, i.e., no permutation), where the generator polynomials ga and gb have octal representation
(7)octal and (5)octal, respectively. Note that various code rates can be obtained by proper puncturing
of x1p, x2p, x3p, and even x1i if the decoder works (for an example, see Section IV). The design of the
constituent convolutional codes, which are not necessarily optimum convolutional codes, is still under
investigation. It was suggested in [5] that good codes are obtained if ga is a primitive polynomial.

We use the encoder in Fig. 1 to generate an (n(N +M), N) block code, where the M tail bits of
code 2 and code 3 are not transmitted. Since the component encoders are recursive, it is not sufficient to
set the last M information bits to zero in order to drive the encoder to the all-zero state, i.e., to terminate
the trellis. The termination (tail) sequence depends on the state of each component encoder after N bits,
which makes it impossible to terminate all component encoders with M predetermined tail bits. This
issue, which had not been resolved in previously proposed turbo code implementations, can be dealt with
by applying the method described in [4], which is valid for any number of component codes.

67

A. Weight Distribution

In order to estimate the performance of a code, it is necessary to have information about its minimum
distance, weight distribution, or actual code geometry, depending on the accuracy required for the bounds
or approximations. The challenge is in finding the pairing of codewords from each individual encoder,
induced by a particular set of interleavers. Intuitively, we would like to avoid joining low-weight codewords
from one encoder with low-weight words from the other encoders. In the example of Fig. 1, the component
codes have minimum distances 5, 2, and 2. This will produce a worst-case minimum distance of 9 for the
overall code. Note that this would be unavoidable if the encoders were not recursive since, in this case, the
minimum weight word for all three encoders is generated by the input sequence u = (00 · · · 0000100 · · · 000)
with a single “1,” which will appear again in the other encoders, for any choice of interleavers. This
motivates the use of recursive encoders, where the key ingredient is the recursiveness and not the fact
that the encoders are systematic. For our example, the input sequence u = (00 · · · 00100100 · · · 000)
generates a low-weight codeword with weight 6 for the first encoder. If the interleavers do not “break”
this input pattern, the resulting codeword’s weight will be 14. In general, weight-2 sequences with
2 + 3t zeros separating the 1’s would result in a total weight of 14 + 6t if there were no permutations. By
contrast, if the number of zeros between the ones is not of this form, the encoded output is nonterminating
until the end of the block, and its encoded weight is very large unless the sequence occurs near the end
of the block.

With permutations before the second and third encoders, a weight-2 sequence with its 1’s separated
by 2 + 3t1 zeros will be permuted into two other weight-2 sequences with 1’s separated by 2 + 3ti zeros,
i = 2, 3, where each ti is defined as a multiple of 1/3. If any ti is not an integer, the corresponding encoded
output will have a high weight because then the convolutional code output is nonterminating (until the
end of the block). If all ti’s are integers, the total encoded weight will be 14 + 2

∑3
i=1 ti. Thus, one of the

considerations in designing the interleaver is to avoid integer triplets (t1, t2, t3) that are simultaneously
small in all three components. In fact, it would be nice to design an interleaver to guarantee that the
smallest value of

∑3
i=1 ti (for integer ti) grows with the block size N .

For comparison, we consider the same encoder structure in Fig. 1, except with the roles of ga and
gb reversed. Now the minimum distances of the three component codes are 5, 3, and 3, producing an
overall minimum distance of 11 for the total code without any permutations. This is apparently a better
code, but it turns out to be inferior as a turbo code. This paradox is explained by again considering
the critical weight-2 data sequences. For this code, weight-2 sequences with 1 + 2t1 zeros separating the
two 1’s produce self-terminating output and, hence, low-weight encoded words. In the turbo encoder,
such sequences will be permuted to have separations 1 + 2ti, i = 2, 3, for the second and third encoders,
where now each ti is defined as a multiple of 1/2. But now the total encoded weight for integer triplets
(t1, t2, t3) is 11 +

∑3
i=1 ti. Notice how this weight grows only half as fast with

∑3
i=1 ti as the previously

calculated weight for the original code. If
∑3
i=1 ti can be made to grow with block size by the proper

choice of an interleaver, then clearly it is important to choose component codes that cause the overall
weight to grow as fast as possible with the individual separations ti. This consideration outweighs the
criterion of selecting component codes that would produce the highest minimum distance if unpermuted.

There are also many weight-n, n = 3, 4, 5, · · ·, data sequences that produce self-terminating output
and, hence, low encoded weight. However, as argued below, these sequences are much more likely to be
broken up by the random interleavers than the weight-2 sequences and are, therefore, likely to produce
nonterminating output from at least one of the encoders. Thus, turbo code structures that would have
low minimum distances if unpermuted can still perform well if the low-weight codewords of the component
codes are produced by input sequences with weight higher than two.

B. Random Interleavers

Now we briefly examine the issue of whether one or more random interleavers can avoid matching small
separations between the 1’s of a weight-2 data sequence with equally small separations between the 1’s of

68

its permuted version(s). Consider, for example, a particular weight-2 data sequence (· · · 001001000 · · ·),
which corresponds to a low-weight codeword in each of the encoders of Fig. 1. If we randomly select an
interleaver of size N , the probability that this sequence will be permuted into another sequence of the
same form is roughly 2/N (assuming that N is large and ignoring minor edge effects). The probability
that such an unfortunate pairing happens for at least one possible position of the original sequence
(· · · 001001000 · · ·) within the block size of N is approximately 1− (1 − 2/N)N ≈ 1 − e−2. This implies
that the minimum distance of a two-code turbo code constructed with a random permutation is not likely
to be much higher than the encoded weight of such an unpermuted weight-2 data sequence, e.g., 14 for the
code in Fig. 1. (For the worst-case permutations, the dmin of the code is still 9, but these permutations
are highly unlikely if chosen randomly.) By contrast, if we use three codes and two different interleavers,
the probability that a particular sequence (· · · 001001000 · · ·) will be reproduced by both interleavers is
only (2/N)2. Now the probability of finding such an unfortunate data sequence somewhere within the
block of size N is roughly 1−

[
1− (2/N)2

]N ≈ 4/N . Thus, it is probable that a three-code turbo code
using two random interleavers will see an increase in its minimum distance beyond the encoded weight
of an unpermuted weight-2 data sequence. This argument can be extended to account for other weight-2
data sequences that may also produce low-weight codewords, e.g., (· · · 00100(000)t1000 · · ·), for the code
in Fig. 1. For comparison, let us consider a weight-3 data sequence such as (· · · 0011100 · · ·), which for our
example corresponds to the minimum distance of the code (using no permutations). The probability that
this sequence is reproduced with one random interleaver is roughly 6/N2, and the probability that some
sequence of the form (· · · 0011100 · · ·) is paired with another of the same form is 1− (1− 6/N2)N ≈ 6/N .
Thus, for large block sizes, the bad weight-3 data sequences have a small probability of being matched with
bad weight-3 permuted data sequences, even in a two-code system. For a turbo code using three codes and
two random interleavers, this probability is even smaller, 1−

[
1− (6/N2)2

]N ≈ 36/N3. This implies that
the minimum distance codeword of the turbo code in Fig. 1 is more likely to result from a weight-2 data
sequence of the form (· · · 001001000 · · ·) than from the weight-3 sequence (· · · 0011100 · · ·) that produces
the minimum distance in the unpermuted version of the same code. Higher weight sequences have an
even smaller probability of reproducing themselves after being passed through the random interleavers.

For a turbo code using q codes and q−1 interleavers, the probability that a weight-n data sequence will
be reproduced somewhere within the block by all q−1 permutations is of the form 1−

[
1− (β/Nn−1)q−1

]N ,
where β is a number that depends on the weight-n data sequence but does not increase with block size
N . For large N , this probability is proportional to (1/N)nq−n−q, which falls off rapidly with N , when n
and q are greater than two. Furthermore, the symmetry of this expression indicates that increasing either
the weight of the data sequence n or the number of codes q has roughly the same effect on lowering this
probability.

In summary, from the above arguments, we conclude that weight-2 data sequences are an important
factor in the design of the component codes, and that higher weight sequences have successively decreasing
importance. Also, increasing the number of codes and, correspondingly, the number of interleavers, makes
it more and more likely that the bad input sequences will be broken up by one or more of the permutations.

The minimum distance is not the most important characteristic of the turbo code, except for its
asymptotic performance, at very high Eb/No. At moderate signal-to-noise ratios (SNRs), the weight
distribution for the first several possible weights is necessary to compute the code performance. Estimating
the complete weight distribution of these codes for large N and fixed interleavers is still an open problem.
However, it is possible to estimate the weight distribution for large N for random interleavers by using
probabilistic arguments. (See [4] for further considerations on the weight distribution).

C. Design of Nonrandom and Partially Random Interleavers

Interleavers should be capable of spreading low-weight input sequences so that the resulting codeword
has high weight. Block interleavers, defined by a matrix with νr rows and νc columns such thatN = νr×νc,
may fail to spread certain sequences. For example, the weight-4 sequence shown in Fig. 2 cannot be broken

69

0 0 . . . 0 0 0
0 0
. 1 0 0 1 . . .
. 0 0 0 0 . . .
. 0 0 0 0 . . .
. 1 0 0 1 . . .
.
0 0
0 0 0 . . . 0 0

WRITE

R
E

A
D

Fig. 2. Example where a block interleaver fails to
“break” the input sequence.

by a block interleaver. In order to break such sequences, random interleavers are desirable, as discussed
above. (A method for the design of nonrandom interleavers is discussed in [3]). Block interleavers are
effective if the low-weight sequence is confined to a row. If low-weight sequences (which can be regarded as
the combination of lower-weight sequences) are confined to several consecutive rows, then the νc columns
of the interleaver should be sent in a specified order to spread as much as possible the low-weight sequence.
A method for reordering the columns is given in [7]. This method guarantees that for any number of
columns νc = aq + r, (r ≤ a − 1), the minimum separation between data entries is q − 1, where a is
the number of columns affected by a burst. However, as can be observed in the example in Fig. 2, the
sequence 1001 will still appear at the input of the encoders for any possible column permutation. Only
if we permute the rows of the interleaver in addition to its columns is it possible to break the low-weight
sequences. The method in [7] can be used again for the permutation of rows. Appropriate selection of a
and q for rows and columns depends on the particular set of codes used and on the specific low-weight
sequences that we would like to break.

We have also designed semirandom permutations (interleavers) by generating random integers i,
1 ≤ i ≤ N , without replacement. We define an “S-random” permutation as follows: Each randomly
selected integer is compared to S previously selected integers. If the current selection is equal to any
S previous selections within a distance of ±S, then the current selection is rejected. This process is
repeated until all N integers are selected. The searching time for this algorithm increases with S and
is not guaranteed to finish successfully. However, we have observed that choosing S <

√
N/2 usually

produces a solution in a reasonable time. Note that for S = 1, we have a purely random interleaver. In
the simulations, we used S = 31 with block size N = 4096.

III. Turbo Decoding for Multiple Codes

In this section, we consider decoding algorithms for multiple-code turbo codes. In general, the ad-
vantage of using three or more constituent codes is that the corresponding two or more interleavers have
a better chance to break sequences that were not broken by another interleaver. The disadvantage is
that, for an overall desired code rate, each code must be punctured more, resulting in weaker constituent
codes. In our experiments, we have used randomly selected interleavers and interleavers based on the
row–column permutation described above.

A. Turbo Decoding Configurations

The turbo decoding configuration proposed in [1] for two codes is shown schematically in Fig. 3. This
configuration operates in serial mode, i.e., “Dec 1” processes data before “Dec 2” starts its operation,
and so on. An obvious extension of this configuration to three codes is shown in Fig. 4(a), which also
operates in serial mode. But, with more than two codes, there are other possible configurations, such as
that shown in Fig. 4(b), where “Dec 1” communicates with the other decoders, but these decoders do

70

Fig. 3. Decoding structure for two codes.

DEC 1 DEC 2 DEC 1

Fig. 4. Different decoding structures for three codes:
(a) serial, (b) master and slave, and (c) parallel.

DEC 1 DEC 2 DEC 3 DEC 1 • • •

DEC 2

DEC 1

DEC 3

TIME

(c)

(a)

• • •

DEC 1

DEC 2

DEC 3

(b)

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

DEC 1

DEC 2

DEC 3

• • •

not exchange information between each other. This “master and slave” configuration operates in a mixed
serial–parallel mode, since all other decoders except the first operate in parallel. Another possibility,
shown in Fig. 4(c), is that all decoders operate in parallel at any given time. Note that self loops are not
allowed in these structures since they cause degradation or divergence in the decoding process (positive
feedback). We are not considering other possible hybrid configurations. Which configuration performs
better? Our selection of the best configuration and its associated decoding rule is based on a detailed
analysis of the minimum-bit-error decoding rule (MAP algorithm), as described below.

B. Turbo Decoding for Multiple Codes

Let uk be a binary random variable taking values in {0, 1}, representing the sequence of information
bits u = (u1, · · · , uN). The MAP algorithm [6] provides the log likelihood ratio Lk, given the received
symbols y:

Lk = log
P (uk = 1|y)
P (uk = 0|y)

(1)

= log

∑
u:uk=1 P (y|u)

∏
j 6=k P (uj)∑

u:uk=0 P (y|u)
∏
j 6=k P (uj)

+ log
P (uk = 1)
P (uk = 0)

(2)

71

ENCODER 1

ρ

ρ

n
1p

y
1i

= ρ (2u – 1) + n
1i

y
1p

= ρ (2x
1p

– 1) + n
1p

u

n
1i

x

Fig. 5. Channel model.

For efficient computation of Eq. (2) when the a priori probabilities P (uj) are nonuniform, the modified
MAP algorithm in [2] is simpler to use than the version considered in [1]. Therefore, in this article, we
use the modified MAP algorithm of [2], as we did in [4].

The channel model is shown in Fig. 5, where the nik’s and the npk’s are independent identically
distributed (i.i.d.) zero-mean Gaussian random variables with unit variance, and ρ =

√
2rEb/No is the

SNR. The same model is used for each encoder. To explain the basic decoding concept, we restrict
ourselves to three codes, but extension to several codes is straightforward. In order to simplify the
notation, consider the combination of permuter and encoder as a block code with input u and outputs
xi, i = 0, 1, 2, 3(x0 = u) and the corresponding received sequences yi, i = 0, 1, 2, 3. The optimum bit
decision metric on each bit is (for data with uniform a priori probabilities)

Lk = log

∑
u:uk=1 P (y0|u)P (y1|u)P (y2|u)P (y3|u)∑
u:uk=0 P (y0|u)P (y1|u)P (y2|u)P (y3|u)

(3)

but in practice, we cannot compute Eq. (3) for large N because the permutations π2, π3 imply that y2

and y3 are no longer simple convolutional encodings of u. Suppose that we evaluate P (yi|u), i = 0, 2, 3
in Eq. (3) using Bayes’ rule and using the following approximation:

P (u|yi) ≈
N∏
k=1

P̃i(uk) (4)

Note that P (u|yi) is not separable in general. However, for i = 0, P (u|y0) is separable; hence, Eq. (4)
holds with equality. If such an approximation, i.e., Eq. (4), can be obtained, we can use it in Eq. (3) for
i = 2 and i = 3 (by Bayes’ rule) to complete the algorithm. A reasonable criterion for this approximation
is to choose

∏N
k=1 P̃i(uk) such that it minimizes the Kullback distance or free energy [8,9]. Define L̃ik by

P̃i(uk) =
eukL̃ik

1 + eL̃ik
(5)

where uk ∈ {0, 1}. Then the Kullback distance is given by

F (L̃i) =
∑
u

e
∑N

k=1
ukL̃ik∏N

k=1(1 + eL̃ik)
log

e
∑N

k=1
ukL̃ik∏N

k=1(1 + eL̃ik)P (u|yi)
(6)

72

Minimizing F (L̃i) involves forward and backward recursions analogous to the MAP decoding algorithm,
but we have not attempted this approach in this work. Instead of using Eq. (6) to obtain {P̃i} or,
equivalently, {L̃ik}, we use Eqs. (4) and (5) for i = 0, 2, 3 (by Bayes’ rule) to express Eq. (3) as

Lk = f(y1, L̃0, L̃2, L̃3, k) + L̃0k + L̃2k + L̃3k (7)

where L̃0k = 2ρy0k and

f(y1, L̃0, L̃2, L̃3, k) = log

∑
u:uk=1 P (y1|u)

∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)∑
u:uk=0 P (y1|u)

∏
j 6=k e

uj(L̃0j+L̃2j+L̃3j)
(8)

We can use Eqs. (4) and (5) again, but this time for i = 0, 1, 3, to express Eq. (3) as

Lk = f(y2, L̃0, L̃1, L̃3, k) + L̃0k + L̃1k + L̃3k (9)

and similarly,

Lk = f(y3, L̃0, L̃1, L̃2, k) + L̃0k + L̃1k + L̃2k (10)

A solution to Eqs. (7), (9), and (10) is

L̃1k = f(y1, L̃0, L̃2, L̃3, k); L̃2k = f(y2, L̃0, L̃1, L̃3, k); L̃3k = f(y3, L̃0, L̃1, L̃2, k) (11)

for k = 1, 2, · · · , N , provided that a solution to Eq. (11) does indeed exist. The final decision is then
based on

Lk = L̃0k + L̃1k + L̃2k + L̃3k (12)

which is passed through a hard limiter with zero threshold. We attempted to solve the nonlinear equations
in Eq. (11) for L̃1, L̃2, and L̃3 by using the iterative procedure

L̃
(m+1)
1k = α

(m)
1 f(y1, L̃0, L̃

(m)
2 , L̃(m)

3 , k) (13)

for k = 1, 2, · · · , N , iterating on m. Similar recursions hold for L̃(m)
2k and L̃

(m)
3k . The gain α

(m)
1 should

be equal to one, but we noticed experimentally that better convergence can be obtained by optimizing
this gain for each iteration, starting from a value slightly less than one and increasing toward one with
the iterations, as is often done in simulated annealing methods. We start the recursion with the initial
condition1 L̃(0)

1 = L̃(0)
2 = L̃(0)

3 = L̃0. For the computation of f(·), we use the modified MAP algorithm
as described in [4] with permuters (direct and inverse) where needed, as shown in Fig. 6 for block
decoder 2. The MAP algorithm always starts and ends at the all-zero state since we always terminate
the trellis as described in [4]. Similar structures apply for block decoder 1 (we assumed π1 = I identity;
however, any π1 can be used) and block decoder 3. The overall decoder is composed of block decoders

1 Note that the components of the L̃i’s corresponding to the tail bits, i.e., L̃ik, for k = N + 1, · · · , N + M , are set to zero
for all iterations.

73

MAP 2π
2

π
2
–1

DELAY

+

–

+

L
2k

L
1
(m)~

L
3
(m)

~

L
2
(m + 1)

~

y
2

Fig. 6. Structure of block decoder 2.

ΣL
0

~

connected as in Fig. 4(c), which can be implemented as a pipeline or by feedback. We proposed an
alternative version of the above decoder in [10]. At this point, further approximation for turbo decoding
is possible if one term corresponding to a sequence u dominates other terms in the summation in the
numerator and denominator of Eq. (8). Then the summations in Eq. (8) can be replaced by “maximum”
operations with the same indices, i.e., replacing

∑
u:uk=i with max

u:uk=i for i = 0, 1. A similar approximation
can be used for L̃2k and L̃3k in Eq. (11). This suboptimum decoder then corresponds to a turbo decoder
that uses soft output Viterbi (SOVA)-type decoders rather than MAP decoders.

C. Multiple-Code Algorithm Applied to Two Codes

For turbo codes with only two constituent codes, Eq. (13) reduces to

L̃
(m+1)
1k = α

(m)
1 f(y1, L̃0, L̃

(m)
2 , k)

L̃
(m+1)
2k = α

(m)
2 f(y2, L̃0, L̃

(m)
1 , k)

for k = 1, 2, · · · , N and m = 1, 2, · · ·, where, for each iteration, α(m)
1 and α(m)

2 can be optimized (simulated
annealing) or set to 1 for simplicity. The decoding configuration for two codes, according to the previous
section, is shown in Fig. 7. In this special case, since the two paths in Fig. 7 are disjoint, the decoder
structure reduces to duplicate copies of the structure in Fig. 3 (i.e., to the serial mode).

AA
AA
AA
AA

• • •

DEC 1 DEC 1 DEC 1

DEC 2 DEC 2 DEC 2

Fig. 7. Parallel structure for two codes.

If we optimize α(m)
1 and α

(m)
2 , our method for two codes is similar to the decoding method proposed

in [1], which requires estimates of the variances of L̃1k and L̃2k for each iteration in the presence of
errors. In the method proposed in [2], the received “systematic” observation was subtracted from L̃1k,
which results in performance degradation. In [3] the method proposed in [2] was used but the received
“systematic” observation was interleaved and provided to decoder 2. In [4], we argued that there is no

74

need to interleave the received “systematic” observation and provide it to decoder 2, since L̃0k does this
job. It seems that our proposed method with α

(m)
1 and α

(m)
2 equal to 1 is the simplest and achieves the

same performance reported in [3] for rate 1/2 codes.

D. Terminated Parallel Convolutional Codes as Block Codes

Consider the combination of permuter and encoder as a linear block code. Define Pi as the parity
matrix of the terminated convolutional code i. Then the overall generator matrix for three parallel codes
is

G = [I π1P1 π2P2 π3P3]

where πi are the permutations (interleavers). In order to maximize the minimum distance of the code
given by G, we should maximize the number of linearly independent columns of the corresponding parity
check matrix H. This suggests that the design of Pi (code) and πi (permutation) are closely related, and
it does not necessarily follow that optimum component codes (maximum dmin) yield optimum parallel
concatenated codes. For very small N , we used this concept to design jointly the permuter and the
component convolutional codes.

IV. Performance and Simulation Results

For comparison with the new results on three-code turbo codes, we reproduce in Fig. 8 the performance
obtained in [4] by using two-code K = 5 turbo codes with generators (1, gb/ga), where ga = (37)octal
and gb = (21)octal, and with random permutations of lengths N = 4096 and N = 16384. The best
performance curve in Fig. 8 is approximately 0.7 dB from the Shannon limit at BER = 10−4. We also
repeat for comparison in Fig. 8 the results obtained in [4] by using encoders with unequal rates with
two K = 5 constituent codes (1, gb/ga, gc/ga) and (gb/ga), where ga = (37)octal, gb = (33)octal, and
gc = (25)octal. To show that it is possible not to send uncoded information for both codes, we used an
overall rate 1/2 turbo code using two codes with K = 2 (differential encoder) with generator (gb/ga),
where ga = (3)octal and gb = (1)octal, and a K = 5 code with generator (gb/ga), where ga = (23)octal and
gb = (33)octal. A bit error rate of 10−5 was achieved at BSNR = 0.85 dB using an S-random permutation
of length N = 16,384 with S = 40.

A. Three Codes

The performance of two different three-code turbo codes with random interleavers is shown in Fig. 9
for N = 4096. The first code uses three recursive codes shown in Fig. 1 with constraint length K = 3.
The second code uses three recursive codes with K = 4, ga = (13)octal, and gb = (11)octal. Note that
the nonsystematic version of the second encoder is catastrophic, but the recursive systematic version is
noncatastrophic. We found that this K = 4 code has better performance than several others.

As seen in Fig. 9, the performance of the K = 4 code was improved by going from 20 to 30 iterations.
We found that the performance could also be improved by using an S-random interleaver with S = 31.

V. Conclusions

We have shown how three-code turbo codes and decoders can be used to further improve the coding
gain for deep-space applications as compared with the codes studied in [4]. These are just preliminary
results that require extensive further analysis. In particular, we need to improve our understanding of
the influence of the interleaver design on the code performance and to analyze how close the proposed
decoding algorithm is to maximum-likelihood or MAP decoding.

75

These new codes offer better performance than the large constraint-length convolutional codes em-
ployed by current missions and, most importantly, achieve these gains with much lower decoding com-
plexity.

Fig. 8. Two-code performance, r = 1/4.

Eb/N0, dB

TWO K = 5 CODES
(DIFFERENT
RATES)
N = 16,384
M = 20

TWO K = 5 CODES
N = 16,384
M = 20

B
E

R

CODE RATE = 1/4

TWO K = 5 CODES
N = 4096
M = 10

K = 15
GALILEO
CODE

1.00.90.80.70.60.50.40.30.20.10.0–0.1–0.2–0.3–0.4–0.5
10–5

10–4

10–3

10–2

10–1

TWO K = 5 CODES
(DIFFERENT RATES)
N = 4096
M = 10

E
b
/N

0
, dB

B
E

R

N = 4096
CODE RATE = 1/4

K = 15
GALILEO CODE

THREE K = 3 CODES
M = 20

M = 20

M = 30

THREE K = 4 CODES

1.00.90.80.70.60.50.40.30.20.10.0–0.1–0.2–0.3–0.4–0.5

10–1

THREE K = 4 CODES

Fig. 9. Three-code performance, r = 1/4.

10–5

10–4

10–3

10–2

76

Acknowledgments

The authors are grateful to S. Dolinar for his contributions to the study of the
weight distribution and interleavers2 and to R. J. McEliece for helpful comments
throughout this study.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-
Correcting Coding: Turbo Codes,”Proc. 1993 IEEE International Conference
on Communications, Geneva, Switzerland, pp. 1064–1070, May 1993.

[2] J. Hagenauer and P. Robertson, “Iterative (Turbo) Decoding of Systematic Con-
volutional Codes With the MAP and SOVA Algorithms,” Proc. of the ITG Con-
ference on Source and Channel Coding, Frankfurt, Germany, October 1994.

[3] P. Robertson, “Illuminating the Structure of Code and Decoder of Parallel Con-
catenated Recursive Systematic (Turbo) Codes, Proceedings GLOBECOM ’94,
San Francisco, California, pp. 1298–1303, December 1994.

[4] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,”
The Telecommunications and Data Acquisition Progress Report 42-120, October–
December 1994, Jet Propulsion Laboratory, Pasadena, California, pp. 29–39,
February 15, 1995.

[5] G. Battail, C. Berrou, and A. Glavieux, “Pseudo-Random Recursive Convolu-
tional Coding for Near-Capacity Performance,” Comm. Theory Mini-Conference,
GLOBECOM ’93, Houston, Texas, December 1993.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Lin-
ear Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory,
vol. IT-20, pp. 284–287, 1974.

[7] E. Dunscombe and F. C. Piper, “ Optimal Interleaving Scheme for Convolutional
Codes,” Electronic Letters, vol. 25, no. 22, pp. 1517–1518, October 26, 1989.

[8] M. Moher, “Decoding Via Cross-Entropy Minimization,” Proceedings GLOBE-
COM ’93, pp. 809–813, December 1993.

[9] G. Battail and R. Sfez, “Suboptimum Decoding Using the Kullback Principle,”
Lecture Notes in Computer Science, vol. 313, pp. 93–101, 1988.

[10] D. Divsalar and F. Pollara, “Turbo Codes for PCS Applications,” Proceedings of
IEEE ICC’95, Seattle, Washington, June 1995.

2 More detailed results are given in S. Dolinar and D. Divsalar, “Weight Distributions for Turbo Codes Using Random and
Non-Random Permutations,” JPL Interoffice Memorandum 331-95.2-016 (internal document), Jet Propulsion Laboratory,
Pasadena, California, March 15, 1995.

77

