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Effects of Symbol Transition Density on Tracking
and Acquisition Performance of the

Data Transition Tracking Loop at
Low Signal-to-Noise Ratios

S. Million and S. M. Hinedi
Communications Systems and Research Section

Effects of the data transition variation on the performance of the digital data
transition tracking loop (DTTL) symbol synchronizer are addressed for symbol
signal-to-noise ratios and window sizes of interest. The data transition variation
will affect the DTTL performance by introducing an additional timing jitter that
results in additional receiver loss. Numerical and simulation results for both tracking
and acquisition are presented.

I. Introduction

The symbol synchronizer is the heart of a digital communications system as it provides symbol timing
to many essential components of a receiver. Examples of subsystems that require proper symbol timing
for accurate operation include the matched filter, the signal-to-noise ratio (SNR) estimator, the Costas in-
phase and quadrature sum-and-dump filters, as well as various baseband lock detectors. In power-limited
channels, the symbol synchronizer usually extracts the symbol timing directly from the noisy signal
[1] and is appropriately termed data-derived symbol synchronization. Although this method requires no
additional power solely for symbol synchronization, the advantage comes at the cost of requiring adequate
transition (zero crossings) in the data symbol sequence. In applications such as space-to-Earth links, the
data transition variation is sometimes very low, and typically additional measures are included in the
communications system to guarantee adequate symbol synchronization performance. An example might
include randomizing the data stream or using Manchester pulse to guarantee transitions. In applications
such as Earth-to-space links, however, the data stream is not coded to ensure adequate transitions;
this is done mainly to simplify the spacecraft complexity. This article serves to evaluate the tracking and
acquisition performance of a commonly used data-derived symbol synchronizer, the digital data transition
tracking loop (DTTL), under the environment of data transition variation.

The DTTL symbol synchronizer is used in various receivers, such as the advanced receiver used by the
Deep Space Network [2] and the Tracking and Data Relay Satellite System (TDRSS) satellite receivers
[3]. Its functional block diagram is shown in Fig. 1, and its operation is described below. The baseband
input signal is first passed through two parallel channels: the in-phase channel (on top) monitors the
polarity of the actual transitions, and the quadrature channel (on the bottom) measures the timing error.
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Fig. 1. The digital data transition tracking loop (DTTL).
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Specifically, the in-phase channel accumulates over a symbol followed by a hard decision on the signal
polarity. By subtracting two successive decisions, a transition detector is used to determine whether a
no transition (0), a +1 to −1 transition, or a −1 to +1 transition occurred. The quadrature channel,
on the other hand, accumulates over the estimated symbol transition and, after an appropriate delay, is
multiplied by the in-phase channel output, Ik. The multiplication results in an error signal, ek, that is
proportional to the estimate of the phase (or timing) error. Subsequently, ek is multiplied by1 κ and then
filtered with the resulting output being used to control the timing generator.

The performance of the DTTL, assuming equally likely transmitted symbols, was first reported on in
[4–6]. Later, the loop performance for an arbitrary transition density, assuming that the noise spectrum
of the error signal is independent of the transition density, was derived in [7]. More recently, the change
in noise spectrum, as well as other effects,2 assuming a high symbol SNR and a DTTL window of one,
was accounted for in [8,9]. The results, nevertheless, were used as approximations for lower symbol SNRs.
The steady-state timing jitter given in [9] was simulated in [10], and it was shown therein that, at a high
symbol SNR, theory and simulation agree very well, while, at a low symbol SNR (4 dB or less), theory is
more optimistic than simulation. In this article, we extend the results of [9] and show the performance of
the DTTL, taking into account data transition variation for all symbol SNRs and window sizes of interest.
We are interested in the low symbol SNR region primarily due to the expected use of higher rate codes
(1/4 and 1/6) in future space missions, which, consequently, result in lower symbol SNRs.

In the following sections, we determine the performance of the DTTL as a function of data transition
variation. In particular, Section II illustrates the DTTL model, which is used in Section III to derive
the timing jitter. Afterwards, in Section IV, we assess the impact of data transition variation on the
probability of acquisition, and conclude with the main points of the article in Section V.

II. The DTTL Model

Consider the DTTL shown in Fig. 1 with a nonreturn-to-zero (NRZ) signaling format. Assuming that
the carrier and subcarrier (if any) have been removed in an ideal fashion, the received baseband waveform
is given by

1 The factor κ (which is defined later) is used to normalize the error signal so that it is only proportional to the phase
difference between the transmitted and received symbol timing.

2 Data asymmetry, the unequal rise and fall times of the logic gating circuits, also results in additional system loss, but is
not considered here.
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r(t) =
√
S
∑
k

dkp(t− kT − ε) + n(t) (1)

where S is the data power, T is the symbol time, n(t) is white Gaussian noise with one-sided power
spectral density N0 W/Hz, ε is the random epoch to be estimated, p(t) is the square-wave function
having a value of 1 for 0 ≤ t < T and having value 0 elsewhere,3 and dk represents the kth symbol
polarity with p and q representing the a priori probabilities of the data dk taking on values 1 and −1,
respectively. The data transition density for a purely random sequence can now be defined as pt = 2pq,
which is the measure of the data pattern variation and ranges from zero to 0.5. Let the phase error λ (in
cycles) be defined as

λ =
ε− ε̂
T

(2)

where ε is the received symbol phase and ε̂ is the estimated symbol phase. It is clear that the error signal
is affected by λ, and in order to quantify this effect, we define the following variables: λT is the timing
error in seconds and ξ0T is the quadrature integration window. In terms of these variables, the error
signal, ek, shown in Fig. 2 can now be written as follows:

ek =
1
2

{√
S [(0.5ξ0 + λ)Tdk+1 + (0.5ξ0 − λ)Tdk] + V2 +N1 +N2

}

× sgn
[√

S [(1− λ)Tdk+1 + λTdk+2] +N2 +N3 + V1

]

− sgn
[√

S [(1− λ)Tdk + λTdk+1] + V1 + V2 +N1

]
λ ≥ 0 (3)

where sgn[.] denotes the signum function; V1 and V2 are the noise components in the kth symbol; N1, N2,
and N3 are the noise components in the (k+1)th symbol; and W1 is the noise component in the (k+2)th
symbol as shown in Fig. 2, and they are all independent of each other.

III. DTTL Tracking Performance

One of the key performance measures of the DTTL is the steady-state timing jitter of λ, namely, σ2
λ.

Using linear theory, σ2
λ can be derived once the following two quantities are determined: (1) the loop

S-curve g(λ) as a function of the normalized timing λ and (2) the two-sided spectral density S(ω, λ) of
the equivalent additive noise nλ(t).

The normalized S-curve gn(λ) is defined as follows:

gn(λ, pt) =
g(λ)

g′(0)|Rs→∞,pt=0.5
=
En,s[ek|λ]√

ST
(4)

where En,s[.] represents expectation over the signal and noise and Rs = ST/N0 is the symbol SNR. The
exact closed-form solution of gn(λ, pt) can be shown to be

3 We assume the DTTL is operating in a wideband channel so that the received pulses are perfectly square, i.e., no
intersymbol interference.
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Fig. 2. The DTTL model.

gn(λ, pt) =
1
4
pt(ξ0 + 6λ)

[
erf
(√

Rs(1− 2λ)
)]
− 1

4
pt(ξ0 − 2λ)

[
erf
(√

Rs

)]
for |λ| ≤ ξ0

2
(5)

where the error function is defined as erf(x) = 2/ (
√
π)
∫ x

0
exp(−v2)dv. Figure 3 shows the normalized

S-curve as a function of transition density at a low (−5 dB) symbol SNR, and it is evident that the
average error becomes small as the transition density decreases. This effect is due to most of the Ik
values in Fig. 1, as well as the additional noise in the error signal, being zero. The first derivative of the
S-curve at λ=0, termed the slope of the S-curve, can be shown to be

g′n(0, pt) = 2pterf
(√

Rs

)
− ptξ0

√
Rs
π

exp (−Rs) (6)

which is identical to the slope given in [9] at high4 Rs. Figure 4 shows the slope as a function of symbol
SNR and transition density for a DTTL window of 0.25. It is evident that at high Rs the slope approaches
2pt, but this value drops as Rs decreases.

Assuming that BLT << 1, it is sufficient to approximate S(ω, λ), the spectrum of the additive noise
nλ(t), at zero frequency; that is, S(0, λ). The normalized noise spectrum can be defined as

h(λ) =
S(0, λ)

S(0, 0)|Rs→∞,pt=0.5
=

S(0, λ)
(1/4)ξ0N0T

(7)

where S(0, λ) = R(0, λ) + 2R(1, λ); R(0, λ) = En,s[ekek]; and R(1, λ) = En,s[ekek+1]. In addition, we
consider the DTTL only at a loop SNR5 greater than 10 dB, so h(λ) is essentially the noise spectral
density seen by the loop at λ=0; that is, h(0). It can be shown that

4 Observe that erf
(√

Rs
)
' 1 and exp (−Rs) ' 0 at a symbol SNR greater than 8 dB.

5 Experience has shown that when the loop SNR, ρ = 1/4π2σ2
λ, is below 10 dB, the loop experiences cycle slipping.
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ξ0
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(8)

which is identical to h(0) given in [9] at high symbol SNR and ξ0=1. Figure 5 shows the normalized
noise spectrum as a function of symbol SNR with transition density as a parameter for ξ0 = 0.25. As
shown therein, at high symbol SNRs, h(0) behaves as 2pt, while at low symbol SNRs, h(0) can deviate
considerably from 2pt.
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Assuming linear theory, gn(λ, pt) can be approximated as g
′

n(0, pt)λ, and the variance of λ becomes [1]

σ2
λ =

h(0)BLTξ0
2Rs[g

′
n(0, pt)]2

Φ(c) (9)

where Φ(c) = B∗L(c)/BL, BL is the design loop bandwidth, and B∗L(c) is the actual noise-equivalent loop
bandwidth defined as [11]

B∗L(c) =
1

2T
1

H2(1)
1

2πj

∮
|z|=1

H(z)H
(
z−1

) dz
z

(10)

where6 c is a constant that multiplies λ at the input of the loop filter (i.e., cλ). The closed-loop transfer
function H(z) in Eq. (10) is given as

H(z) =
cF (z)N(z)

1 + cF (z)N(z)
(11)

where N(z) = T/[z2(z − 1)] is the numerically controlled oscillator (NCO) transfer function and F (z) is
the loop filter transfer function. A first-order loop filter has a form (Type I)

F (z) = 4BL (12)

and a second-order loop filter has a form (Type II)

F (z) = G1 +
G2

(1− z−1)
(13)

6 The above two-sided complex integral can be evaluated using techniques described in [12].
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where G1 = rd/T , G2 = rd2/T , and d = 4BLT/(r− 1), with the parameter r typically having value 2 or
4. For small BLT products, it can be shown that, for Type I loop filters, Φ(c) = c, while for Type II loop
filters, Φ(c) > c. In this article, we present the tracking performance of the DTTL only for a Type I loop
filter.

For the DTTL, the S-curve should be normalized by g
′

n(0, pt), so that the loop makes adjustments
only to λ. In practice, however, the knowledge of pt is not available, and we must instead normalize the
S-curve by g

′

n(0, 0.5), so that the normalization factor in Fig. 1 becomes κ = 1/[g
′

n(0, 0.5)]. Consequently,
the input to the loop filter is [g

′

n(0, pt)]/[g
′

n(0, 0.5)]λ = 2ptλ, so that c = 2pt. For a Type I loop filter,
the timing jitter can be rewritten by absorbing the factor [g

′

n(0, pt)]/[g
′

n(0, 0.5)] into the bandwidth, BL.
Disregarding Φ(0), the variance consequently becomes

σ2
λ =

h(0)BL0Tξ0
2Rsg

′
n(0, pt)g

′
n(0, 0.5)

(14)

where BL0 is the single-sided bandwidth at pt = 0.5. Note that the above variance is identical to that
given in [9] at high symbol SNRs, since g

′

n(0, 0.5) = 1 in that region. The ratio of the variance given in
Eq. (9) to that given in [9] is plotted as a function of symbol SNR in Fig. 6(a). It is clear that, at high
symbol SNRs, the two results match as expected while, at lower symbol SNRs, they diverge by as much
as 5 dB. Figure 6(b), on the other hand, shows the variance as a function of symbol SNR for window
sizes 1 and 0.25. It is evident that, at high symbol SNRs, the variance is independent of pt while, at
low symbol SNRs, the variance increases for decreasing pt. The horizontal line in Fig. 6(b) represents
the 10-dB loop SNR threshold, and operating above this line can cause cycle slipping. Simulation was
conducted to verify the analysis as shown in Fig. 6(b) for a BL0T product of 0.01. Below the 10-dB loop
SNR line, simulation and theory agree very well, while above it, linear theory breaks down and theory is
more optimistic than simulation.
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IV. DTTL Acquisition Performance

Now that the tracking performance of the DTTL for varying data transition densities is characterized,
we investigate its acquisition performance in this environment. Unfortunately, there is no easy analytical
way to study the acquisition performance of the DTTL, and we resort to simulation to understand its
behavior. Throughout the simulation, a sampling rate of 100 Hz and a symbol rate of 1 Hz are maintained
so that there are 100 samples per symbol in each symbol duration. Each simulation was run for 100/BL
seconds and, if the difference between the NCO phase and the input phase is within the absolute value of
π/2 for 10/BL seconds (our lock criterion), the simulation stops and records the normalized time. The
simulation was run 200 times for different noise seeds (i.e., different input phases) in order to produce
sufficient statistics for the cumulative probability distribution. In the simulation, a Type II loop filter
with r = 2 was used with BL = 0.0001 Hz and the same NCO transfer function as in the tracking case.

As shown in Fig. 7, numerous simulations were run to understand the behavior of the DTTL in the
presence of pt. In particular, Fig. 7(a) shows the probability of acquisition for ∆f/BL = 0 and 0.25
at a symbol SNR of 0 dB. Without any frequency offset, the BLt (normalized acquisition) time for an
acquisition probability (Pacq) of 90 percent is 0.6, 0.8, and 10.0 for pt =50, 30, and 10 percent, respectively.
With a frequency offset equal to 0.25BL, on the other hand, the BLt time for Pacq = 90 percent is 0.6,
2.0, and 20.0 for pt =50, 30, and 10 percent, respectively. It is clear that a frequency offset of 0.25BL
has little effect on the acquisition time for pt = 0.5. In addition, Fig. 7(b) shows the probability of
acquisition for ∆f/BL = 0.75 again at a 0-dB symbol SNR. We have added the case of ∆f/BL = 0
therein as a reference for comparison. For the ∆f/BL = 0.75 case, the BLt time for Pacq = 90 percent
is 3.0 and 10.0 for pt = 50 and 30 percent, respectively, while the case for pt = 10 percent never locks
within 100/BL seconds. In general, the acquisition time for pt = 50 percent is a magnitude lower than
pt = 10 percent, but only slightly less for pt = 30 percent.

= 0.75, pt = 10%
BL

∆f

= 0.75, pt = 30%
BL

∆f

= 0.75, pt = 50%
BL

∆f

= 0, pt = 50%
BL

∆f

= 0, pt = 30%
BL
∆f

= 0, pt = 10%
BL

∆f

(b)

100.0010.001.000.100.01

BLt

100.0010.001.000.100.01

BLt

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R

O
B

A
B

IL
IT

Y
 O

F
 A

C
Q

U
IS

IT
IO

N

= 0.25, pt = 10%

= 0, pt = 30%
BL

∆f= 0.25, pt = 30%
BL

∆f

= 0, pt = 10%
BL

∆f

= 0.25, pt = 50%
BL

∆f

= 0,
BL

∆f

Fig. 7.  The probability of acquisition versus normalized time at Rs = 0 dB at (a) ∆f /BL = 0 and 0.25 and
(b) = ∆f /BL = 0.75.

(a)

pt = 50%

BL

∆f

V. Conclusion

This article presented the tracking and acquisition performance of the DTTL symbol synchronizer
under various conditions of transition density and window size. For a Type I loop filter, the tracking
performance at high symbol SNRs is independent of the transition density, but at low symbol SNRs,
severe degradation can result for low transition density. The acquisition performance of the DTTL was
simulated at a 0-dB symbol SNR. As a rough rule, the acquisition time for pt = 10 percent is ten times
longer than that for pt = 50 percent.
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