
1

IPN Progress Report 42-181 • May 15, 2010

Evaluation of Error-Correcting Codes for
Radiation-Tolerant Memory

Seungjune Jeon,* B. V. K. Vijaya Kumar,* Euiseok Hwang,*
and Michael K. Cheng†

* Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.

† Communication Architectures and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration. © 2010 All rights reserved.

In space, radiation particles can introduce temporary or permanent errors in memory sys-
tems. To protect against potential memory faults, either thick shielding or error-correcting
codes (ECC) are used by memory modules. Thick shielding translates into increased mass,
and conventional ECCs designed for memories are typically capable of correcting only a
single error and detecting a double error. Decoding is usually performed through hard de-
cisions where bits are treated as either correct or flipped in polarity. We demonstrate that
low-density parity-check (LDPC) codes that are already prevalent in many communication
applications can also be used to protect memories in space. Because the achievable code
rate monotonically decreases with time due to the accumulation of permanent errors, the
achievable rate serves as a useful metric in designing an appropriate ECC. We describe
how to compute soft symbol reliabilities on our channel and compare the performance of
soft-decision decoding LDPC codes against conventional hard-decision decoding of Reed-
Solomon (RS) codes and Bose-Chaudhuri-Hocquenghem (BCH) codes for a specific memory
structure.

I. Introduction

Errors in memories can be soft (i.e., transient) or hard (i.e., permanent) errors. Soft errors
may be caused by energetic particles, coupling from power supply noise, or variability in
device behavior. Typically, soft errors would produce only a single-cell malfunction. As
memory building blocks shrink into the nanometer regime and when memories are used
in space applications, the frequency of multiple-cell malfunction increases, and these error
events can range from a few bit flips to hundreds of errors. In addition to soft errors, hard
errors can occur both in manufacturing due to defects or lithography contaminants, and in
use due to device wear-out or cosmic radiation.

For space applications, memories are either made radiation-hard by strong material shield-
ing or made radiation-tolerant through protection of error-correcting codes (ECCs). How-
ever, current radiation-tolerant approaches may not handle multiple bit errors elegantly or
at all. For example, the Mars Exploration Rovers (MERs) adopted a single-error-correction

2

and double-error-detection code to protect memory accesses. This simple error detection
and correction (EDAC) code cannot sustain an event with three or more bit errors. More-
over, the access period to selected memory modules on the MERs was about 90 ns, or on the
order of 11 MHz, because the EDAC circuit was implemented on a radiation-hard chip and
clock rates on these elements are limited. In this article, we consider modern low-density
parity-check (LDPC) codes for memory systems. LDPC codes are capacity-approaching
codes that are increasingly being adopted in communications systems ranging from wire-
less routers to space communications. However, LDPC codes have yet to be considered for
protecting memories because well-performing short (less than 1 kbit information length)
LDPC codes are hard to design and the complexity of iteratively decoding long LDPC codes
is higher than the decoding of conventional codes. Decoding LDPC codes also uses soft
symbol information provided by the channel, but memory outputs are generally treated as
hard bits and not soft information. In order to obtain the full performance of soft-decision
decoding LDPC codes, we introduce a technique to generate soft symbol information using
parameters that indicate the strength of radiation and the period of rewrites of the memory
contents. We show that LDPC codes can improve, when compared to conventional Reed-
Solomon (RS) codes, the reliability of commercial off-the-shelf (COTS) memory systems tar-
geted for space use.

ECCs for memories in space have been studied in literature. Goodman et al. [1] evalu-
ated single-error-correction (SEC) codes. Saleh et al. [2] investigated single-error-correction
and double-error-detection (SECDED) codes. Shirvani et al. [3] proposed using RS codes
to protect against data corruption in software. Cardarilli et al. [4] proposed an analytical
method to calculate block error rates of RS codes for scrubbing memory systems. The same
authors [5] also suggested adaptively increasing the length of RS codes to track changing
radiation environments. Kaneko et al. [6] made measurements to characterize memory fail-
ure events in a radiation environment. Recently, MacLeod et al. [7] discussed a plan for a
satellite test of a nonvolatile memory device. Nguyen and Irom [8] tested radiation effects
on recently developed COTS NAND flash memory devices for both single-level cell and mul-
tilevel cell devices. The authors [9] demonstrated that 1-kbit LDPC codes can outperform RS
codes in the memory systems in a radiation environment.

In this article, we extend the work described above. In Section II, we define a new channel
to model both soft and hard errors in space and discuss the channel capacity of such chan-
nels briefly. In Section III, we apply RS, Bose-Chaudhuri-Hocquenghem (BCH), and LDPC
codes to our memory model. For decoding LDPC codes, we derive the needed soft informa-
tion from our channel model. In Section IV, we compare RS, BCH, and LDPC code perfor-
mance in the targeted environment. In Section V, we summarize our work.

II. Model of Memory Systems

A. Channel Model

There are two types of errors in memory systems affected by radiation. A soft error is tem-
porary such that the memory content at the soft error location has been changed from the
original but can be corrected. For example, ECCs can correct soft errors by updating the
erroneous location with the correct value. Therefore, the number of soft errors can be de-
creased after the memory contents are overwritten by the ECC decoding output.

3

In contrast, a hard error is fixed such that the memory content at the hard error location
cannot be changed. No new information can be written. The locations of hard errors can be
detected and made known to the ECC decoder. Therefore, hard errors can be treated as era-
sures. The number of hard errors cannot be decreased even after the memory contents are
overwritten by the ECC decoding output, and hard errors will only increase with time.

Scrubbing is an operation to refresh memory content with the ECC decoder output to cor-
rect errors. The scrubbing interval is the time between each scrubbing. A scrubbing interval
is denoted by Ts in this article. The number of soft errors can be reduced after scrubbing
whereas the number of hard errors cannot be decreased by scrubbing. The number of hard
errors only accumulates. Frequent scrubbing or short scrubbing interval may keep error
rates low over longer periods. However, frequent scrubbing leads to high hardware power
consumption, which is unattractive in spacecraft.

A way to circumvent hard error locations is to write the corrected bits in undamaged loca-
tions after scrubbing. However, this scheme requires additional memories to store both the
corrected bits and their locations. Moreover, the new bit locations and the data of addresses
are also not immune to radiation effects. Since this scheme uses more redundant bits, the
effectiveness of this scheme should be evaluated by comparing ECCs of lower code rates.
Analysis and evaluation of this scheme is out of the scope of this article. We will focus on
nominal scrubbing without relocating hard error bits.

Since the number of errors caused by radiation particles depends on the time interval T
of the radiation exposure, our channel model depends on T , as seen in Figure 1(a). COTS
memories are often used in spacecraft, but COTS memories do not provide soft informa-
tion per bit location during readback. The available information to the ECC decoder is the
binary information and the location of hard errors. We mark erasures as e and define the
transition probabilities as follows:

Y X T

Y X T

Y X T

Y X T

Y X

1 0

0 1

0

1

01

10

0

1

e

e

e e

= =

= =

= =

= =

= =

Pr

Pr

Pr

Pr

Pr

p

p

q

q

1

=

=

=

=

=

_ ^

_ ^

_ ^

_ ^

_

i h

i h

i h

i h

i

Equation (5) implies that a hard error always remains unchanged.

We label channels with p01 T^ h= p10 T^ h and q0 T^ h= q1 T^ h as symmetric channels and de-
fine the probability of soft error during time T as

p T p T p T01 10= =^ ^ ^h h h

with the probability of hard error during time T as

q T q T q T0 1= =^ ^ ^h h h

(1)

(2)

(3)

(4)

(5)

(6)

(7)

4

and the probability of no error during time T as r T^ h. Thus,

p T q T r T 1= + =^ ^ ^h h h

Now we will derive these probabilities by the following reasoning. If there is no scrubbing,
a cascade of two channel models over successive time intervals T1 and T2 must be equiva-
lent to one channel model over T1 + T2 as seen in Figure 1(b). Since we have a soft error if
and only if there is only one soft error in T1 or T2 but no hard error, the soft error probabil-
ity over the interval T1 + T2 must satisfy

p T T p T r T r T p T1 2 1 2 1 2+ +=^ ^ ^ ^ ^h h h h h

Since we have a hard error if and only if there is a hard error in the first interval T1; or no
hard error in the first interval and a hard error in the second interval T2 , the hard error
probability over the interval T1 + T2 must satisfy

q T T q T q T q T11 2 1 1 2+ = + -^ ^ ^^ ^h h hh h

We can obtain the following boundary conditions:

0,

,

0,

lim

lim

limp

T

T

p T

q q

r r

0

0

0 0

0

1

1

T

T

T

= =

= =

= =

"

"

"

3

3

3
^ ^

^ ^

^ ^

h h

h h

h h

since there is no error at the beginning and all the bits will eventually become hard errors.

Now we are ready to obtain p T^ h, q T^ h, and r T^ h by solving Equations (8), (9), and (10).
One way is to solve differential equations by differentiating the equations with respect to
the time variables and using the boundary conditions in Equation (11).

Figure 1. Channel model of a one-bit memory without scrubbing: (a) channel model; (b) two equivalent

channel models. Each transition probability is a function of time. Hard error is denoted as e.

If X = e, the memory bit is not usable due to the hard error.

X Y

q0(T )

q1(T )

p10(T )

p01(T )

0 0

1 1

e e

X T1 + T2

T1

Y

YX T2

(8)

(9)

(10)

(11)

(a) (b)

5

We obtained the following solutions for some nonnegative constants m and me:

p T
e e

T

T
e e

2

2

T T

T

T T

2

2

e e

e

e e

=
-

+

m m m

m

m m m

- - +

-

- - +

q e1= -

r =

^

^

^

^

^

h

h

h

h

h

For a small time interval T %
2m + me
1 , we can approximate the soft error probability to

p T^ h. mT and the hard error probability q T^ h. meT . In this sense, m is called the soft error

rate (the number of soft errors per bit per unit time), and me is called the hard error rate (the
number of hard errors per bit per unit time). Strictly speaking, the unit for m and me is sim-
ply the inverse of time. However, error/bit/day is usually used for convenience. The soft
error rates and the hard error rates are a measure of the radiation strength and its effects on
memory systems.

In Figure 2(a), we see that the probability of hard error q T^ h increases monotonically, and
the probability of no error r T^ h decreases monotonically. It might not be obvious why the
probability of soft error p T^ h increases to the maximum and then decreases to zero. Fig-
ure 2(b) explains this behavior. In fact, the fraction of soft errors in the bits having no hard
error increases monotonically from zero to half over time. The decrease of the probability of
soft errors after the maximum is caused by the decrease of the probability of no hard error.
Note that memory in our model can store no information at infinite time because p T^ h ap-
proaches 1/2, even if there is no hard error at all me = 0^ h, which is of the same property as
an infinite cascade of binary symmetric channels.

We will show an example in which a cascade of L channel models with equal time intervals

T/L is equivalent to a channel model over time interval T . We will have a soft error over
time interval T if and only if we have an odd number of soft errors but no hard error. There-
fore, we have the effective soft error probability over T

/ /p T
L

j
p T L r T L

[,]

effective
odd in

j L j

j L0

=
-_ e _` _`i o ij ij/

Since

/ / / /
L

j
p T L r T L r T L p T L

j

L j L j L

0

= +
=

-e _` _` _ _`o ij ij i ij/

and

/ / / /
L

j
p T L r T L r T L p T L

j

L j L j L

0

- = -
=

-e _` _` _ _`o ij ij i ij/

have the same terms for even powers of p T/L^ h and the terms of opposite signs for odd
powers of p T/L^ h,

(12)

(13)

(14)

(15)

(16)

(17)

6

peffective T_ i= 2
1
r T/L_ i+ p T/L_ i` jL- r T/L_ i- p T/L_ i` jLa k

= 2
1
e-meT/L_ iL- e- me+2m_ iT/L_ iL` j

= 2
1
e-meT - e- me+2m_ iT_ i

= p T_ i

We have a hard error over L stages if and only if we have a hard error at a stage j but no
hard error until that stage. Therefore, we have the effective hard error probability over T

/ /

/

q T q T L q T L

q T L

e

T

1

1

/

effective
j

j

L

L

T L L

T

1

1

e

e

= -

-

m

m

-

=

-

-e

q

1

1

1

= -

= -

= -

=

_ _` _

_`

_

_

i ij i

ij

i

i

/

Therefore, a cascade of L channel models with equal time intervals T/L is equivalent to a
channel model over time interval T .

In this section, we defined a channel model that is consistent over any time interval.

Figure 2. Probabilities of soft error, hard error, and no error without scrubbing as functions of time

when lll = lle = 10–3 errors/bit/day: (a) probabilities; (b) conditional probabilities.

P (soft error/no hard error)

=

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 500 1000 1500 2000
Time T, hr

r(T )

p(T )

1 – q(T )

1 – q(T )

P (no error/no hard error)

=

P
ro

b
ab

ili
ty

0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 500 1000 1500 2000

Time T, hr

P
ro

b
ab

ili
ty

lT, leT

q(T ); hard error

r(T ); no error

p(T ); soft error

0

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(a) (b)

7

B. Channel Capacity Without Scrubbing

We will calculate the channel capacity without scrubbing (intermediate processing) in time
T. For the symmetric cases, the channel capacity for interval T is

;

,

maxC T I X Y

T q T p T q T

()Pr X
=

q H H1= - + -

^ ^

^ ^^ ^ ^^

h h

h hh h hh

where the entropy functions are defined as

_ log logq T q T q T q T q T1 12 2- - - -H ^^ ^ ^ ^^ ^^hh h h hh hh

and

, log logH p T q T p T p T q T q T

p T q T p T q T1 1

2 2

2

_- -

- - - -log-

^ ^^ ^ ^ ^ ^
^ ^^ ^ ^^

h hh h h h h
h hh h hh

As a check for correctness, we see that when p T^ h= 0, the capacity becomes 1 - q T^ h
which is the capacity of the binary erasure channel (BEC) with erasure probability q T^ h
Similarly, if q T^ h= 0, the capacity becomes 1 -H p T^ h^ h, which is the capacity of the bi-
nary symmetry channel (BSC) with crossover probability p T^ h. For 0 1 p T^ h1 2

1 and

0 1 q T^ h1 1, the channel model has smaller capacity than both the BEC with q T^ h and the
BSC with p T^ h.

It can be shown that

/ ,C T q T H q T H p T q T

H
e

q T H p T

1

1 2
1

1 1 0

BEC BSC

T
T

q T p T

2
e

e

e 0

= - + -

-
-

- -

m
m

m

-

=

m =

e=

=

C C=

^ ^^ ^ ^^

cd

^^ ^^_

^^ ^^

h hh h hh

mn

hh hhi

hh hh

where pme= 0 T^ h is the BSC crossover probability if the hard error probability were zero (i.e.,

me = 0), CBSC pme=0 T^ h^ h is the channel capacity of the BSC of crossover probability pme= 0 T^ h
and CBEC q T^ h^ h is the channel capacity of the BEC of erasure probability of q T^ h. In other
words, the overall capacity is the product of channel capacities of a BEC and a BSC.

C. Channel Capacity with Scrubbing

The channel capacity can be increased if we allow scrubbing over a time interval. We would
expect that more frequent scrubbing will lead to a higher capacity. That is, if we use a
shorter scrubbing interval, we can increase the code rate of the error-correcting code we use.
Possible disadvantages of frequent scrubbing may include higher power consumption and
shorter lifetime for flash memories due to wear-out effects.

The calculation of channel capacity with scrubbing is not straightforward. Although we
may be able to calculate capacities asymptotically for infinite code length or infinite num-
ber of scrubbings, the capacity for finite code lengths and finite number of scrubbings re-
main as open questions in this article.

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

,

.

,

8

III. Coding

A. Review of RS and BCH Codes

Suppose that we have an n,k^ h BCH code that can correct up to t bit errors per codeword
if there is no bit erasure. The minimum distance of the BCH is dmin =2t+ 1. As long as the
number of bit errors (soft errors) e and the number of bit erasures (hard errors) f in a re-
ceived word are bounded by

e f t2 2#+

the correct BCH codeword can be found by the decoder.

For the pseudodecoding of BCH codes, if Equation (35) is satisfied for a received word, we
assume that all the errors and erasures are corrected and the corrected codeword is rewritten
into memory during scrubbing. Otherwise, we declare a decoding failure and no scrubbing
is performed. Note that once the number of accumulated hard errors (bit erasures) reaches
dmin - 1 in a codeword, no further errors (hard or soft) can be corrected.

Equation (35) also can be used for the pseudodecoding of an n,k^ h RS code over a Ga-
lois Field of size 2m where we map k information symbols into n codeword symbols
and each field element is represented by m bits. This RS code can correct up to t sym-
bol errors if there are no symbol erasures and the minimum distance of the RS code is

dmin = n- k+ 1 = 2t+ 1.

An RS symbol is considered erased if one or more bits that comprise the symbol are erased.
An RS symbol is considered erroneous when one or more bits that comprise the symbol is
in error and no erasures occur in the symbol. Therefore, we obtain the probability of hard
symbol error (symbol erasure) during a scrubbing interval as

q T q T1 1s s s
m= - -^ ^^h hh

and the probability of soft symbol error (erroneous symbol) as

p T q T p T q T1 1s s s
m

s s
m= - - - -^ ^^ ^ ^^h hh h hh

The block error rates of RS codes can be calculated analytically by using the method provid-
ed in [4], if the probabilities of soft symbol error and hard symbol error are given. We also
modified the method to analytically calculate the block error rates of BCH codes.

B. LDPC Codes

Soft information can be generated using radiation parameters and the scrubbing interval.
The log-likelihood ratio (LLR) Lch y^ h for a memory output y can be expressed in terms of
the parameters in the channel model as follows:

(35)

(36)

(37)

9

,

log
Pr

Pr

log if

L y
Y y X

Y y X

p T q T
p T

y

p T
p T q T

q T
q T

1

0

1
1

1

ch

s s

s

s

s s

s

s

10 1

01

10

01 0

1

0

_
= =

= =

=

- -
=

- -
,

,

log if

log if

y

y

0

e

=

=

^ _
_

^ ^
^

^
^ ^

^
^

h i
i

h h
h

h
h h

h
h

Z

[

\

]
]
]]

]
]
]]

For symmetric channels, the LLR from the memory output can be simplified as

, ,

,

log if

if

L y r T
p T

y y

y

1 0

0
ch s

s
!

e

=
= + = -

=

^ ^
^ ^ ^h h
h h h*

These LLRs can be used not only in LDPC decoders but also in other soft decision decoders.
Bit decisions are made based on the LLRs and the corrected bits can be used to update the
soft errors but not the hard errors.

If we substitute p Ts^ h and r Ts^ h from Equation (12) for those in Equation (40), we obtain

, ,

,

log tanh if

if
L y

T y y

y

1 0

0
ch

s! m

e
=

= + = -

=
^ ^ ^ ^h h h h

*

It is interesting to note that the hard error rate me is canceled out so that the LLR is
independent of me for symmetric channels. In fact, it should not be a surprise since

p Ts^ h/r Ts^ h= tanh mTs^ h is the ratio between the points on the two curves in Figure 2(b) at
T = Ts.

For LDPC decoding, either sum-product decoding or min-sum decoding can be used. The
two methods are summarized in [10]. The min-sum decoding is an approximation of sum-
product decoding and is less sensitive to the channel parameters in general.

C. Turbo Product Codes

We describe a product code in Figure 3. The code comprises horizontal codewords and
vertical codewords. The overall code can be seen as an n1n2,k1k2^ h code. In contrast to a
general single n1n2,k1k2^ h code, the product code can be decoded using the decoders of
the constituent n1,k1^ h and n2,k2^ h codes, which are much less complex compared to the
single-code decoder, especially when n1 and n2 are large. If n1 = n2, only one short decoder
is needed. While using low-complexity decoders is an advantage, a disadvantage is the re-
quirement of additional memory to store extrinsic LLRs that are exchanged between the
horizontal decoding and the vertical decoding. For example, for a 1-Mbit product code (i.e.,

n1n2 = 106), 7-Mbit memory overhead is necessary if a 7-bit LLR implementation is used.
In such a case, if a 2-Gbyte memory is used, the fraction of overhead for LLR storage will be
7 × 106/16 × 109 = 4.4 × 10–4, which is small.

(38)

(39)

(40)

(41)

10

We illustrate the concept of turbo decoding of product codes in Figure 4. If the row (hori-
zontal) codes and column (vertical) codes are the same, a common decoder can be shared
between the row decoding and the column decoding. If throughput is a critical require-
ment, multiple decoders can be employed. The decoding algorithm is similar to that in [11],
where each LDPC decoder provides extrinsic LLRs directly rather than posteriors.

We define one turbo iteration as (column decoding)-(row decoding) and two turbo itera-
tions as (column decoding)-(row decoding)-(column decoding)-(row decoding).

IV. Results

Figure 5 shows the block error rates of equivalent RS, BCH, and LDPC codes with a message
length of 4096 bits and a code rate 8/9. This figure shows that LDPC code with sum-product
decoding provides significant advantage over not only conventional RS or BCH codes but
also the same LDPC code with min-sum decoding. Before we discuss the results further, we
will describe the simulation setup.

The horizontal axis represents elapsed time and its unit is the number of scrubbing inter-
vals. For example, 100 scrubbing intervals correspond to 100 hours when each scrubbing
interval is 1 hour long. For the simulation, we used the probability of soft error and
hard error as 4.167 × 10–5. These soft and hard error probabilities do not change as long
as the products mTs and meTs remain the same. One combination is Ts = 1 hour and

m = me = 10–3 errors/bit/day.

Figure 3. Product codes.

k2 Columns

n2 Columns

k 1
R

ow
s

n 1
R

ow
s

Message Parity

Parity Parity

A codeword

A codeword

11

Figure 4. Turbo decoding of product codes.

(Zeros for initial iteration)
Lext (col)

Lpost (col)

Lpost (row)

Lext (col)

Lext (row)

Lext (row)

Column
Decoder

Row
Decoder

Lch (col)

Lch (row)

Decision

+

+

–

–

Memory

Figure 5. Performance of a (4608, 4096) LDPC code; p (Ts) = q (Ts) = 4.17 × × 10–5; ll = lle = 10–3 error/bit/day and

Ts = 1/24 day. The number of maximum iterations of LDPC decoder per scrubbing were 10, 20, and 40.

0 200

100

10–1

10–2

10–3

10–4

10–5

10–6

400 600 800

Time, Number of Scrubbing Intervals

B
lo

ck
 E

rr
or

 R
at

e

1000

RS BCH

LDPC
min-sum

LDPC
sum-product

1200 1400 1600 1800 2000

12

Note that this radiation parameter translates into a harsher condition than that meas-
ured in space. Typically, m and me are in the range of 10–7 to 10–8 in space [6–8]. For
m = me = 10–7, the results in Figure 5 correspond to the case of Ts =104 hours.

The vertical axis in Figure 5 denotes block error rates. A block error is declared when we ob-
tain either a decoding failure or an incorrect codeword estimate at the decoder output. We
do not show results corresponding to fewer than 5 block errors.

The RS code is a shortened (462, 410) code over GF(210) that can correct up to 26 soft sym-
bol errors (t = 26 symbols, dmin = 53 symbols). Two BCH codes with code rates slightly
above 8/9 and below 8/9 are plotted in Figure 5 since the BCH code with code rate exactly
8/9 and the message length 4096 bits does not exist. The lines for the two codes are too
close to each other to be distinguishable in Figure 5. One code is a (4603, 4096) code short-
ened from the (8191, 7684) BCH code that can correct up to 39 soft errors in a codeword
(t = 39 bits, dmin =79 bits). Another code is a (4616, 4096) code shortened from (8191,
7671) code that can correct up to 40 soft errors in a codeword (t = 40 bits, dmin = 81 bits).
The block error rates obtained by the analytical method [4] for the RS code and our modifi-
cation for the BCH codes were identical to our simulation results.

The LDPC code used in Figure 5 is a (4608, 4096) code whose parity check matrix was gen-
erated by the progressive edge growth (PEG) method [12,13]. The column weight of the
parity check matrix is 5 and the girth of the bipartite graph is 6. The minimum distance of
this LDPC code is unknown, which is typical for most for LDPC codes. In general, comput-
ing the minimum distance of a binary linear code is an NP-hard problem [14]. RS codes and
BCH codes have nice algebraic constructions in which the desired minimum distances are
defined by design. For each of min-sum decoding and sum-product decoding, the number
of maximum iterations for the three lines is 10, 20, and 40 from top to bottom.

We see that LDPC code with sum-product decoding provides significant gains over RS or
BCH codes. Meanwhile, the advantage of LDPC code with min-sum decoding over RS and
BCH codes decreases as target block error rates decrease and the advantage even disappears
when the curves cross each other in low block error rates. The sum-product curves could
cross the RS or BCH curves in the low block error rate region. However, if we assume that
the slopes of the curves are maintained, the crossing point is expected to be at extremely
low block error rates so that the LDPC code with sum-product decoding provides an advan-
tage over RS or BCH codes for practical applications.

The performance gain of sum-product decoding over min-sum decoding is related to the
importance of the usage of the radiation parameters in the LLR determination in Equa-
tion (38).

Figure 6 shows the block error rates of equivalent RS, BCH, and LDPC codes with a message
length of 2048 bits and a code rate 8/9. The simulation setup is the same as in Figure 5 ex-
cept for the length of the error-correcting codes. The RS code is a shortened (231, 205) code
over GF(210) that can correct up to 13 soft symbol errors (t = 13 symbols, dmin = 27 sym-
bols). One BCH code (left curve) is a (2300, 2048) code shortened from the (4095, 3843)

13

BCH code that can correct up to 21 soft errors in a codeword (t = 21 bits, dmin = 43 bits).
The other BCH code (right curve) is a (2312, 2048) code shortened from the (4095, 3831)
BCH code that can correct up to 22 soft errors in a codeword (t = 22 bits, dmin = 45 bits).
The LDPC code is a (2304, 2048) PEG code with the column weight 3 and girth 6. For each
of min-sum decoding and sum-product decoding, the number of maximum iterations for
the three lines is 10, 20, and 40 from top to bottom.

We observe similar behaviors of RS code, BCH code, and LDPC code with min-sum decod-
ing as in Figure 5. Interestingly, the advantage of the LDPC with sum-product decoding is
diminished significantly, so that even the sum-product decoding can be outperformed by
BCH codes at block error rates below 10–5 if we assume that the slope of the curves is main-
tained. Therefore, for these 2-kbit codes, using LDPC codes can provide gains only if target
block error rates are above about 10–5.

Figure 6. Performance of a (2304, 2048) LDPC code; p (Ts) = q (Ts) = 4.17 × × 10–5; ll = lle = 10–3 error/bit/day and

Ts = 1/24 day. The number of maximum iterations of LDPC decoder per scrubbing were 10, 20, and 40.

0 200

100

10–1

10–2

10–3

10–4

10–5

10–6

400 600 800

Time, Number of Scrubbing Intervals

B
lo

ck
 E

rr
or

 R
at

e

1000

RS BCH

1200

LDPC
min-sum

LDPC sum-product

Figure 7 shows the block error rates of equivalent RS, BCH, and LDPC codes that can
contain 1024 bits of message at code rate 8/9. The simulation setup is also the same as in
Figure 5 except for the length of the error-correcting codes. The RS code is a shortened
(144, 128) code over GF(28) that can correct up to 8 soft symbol errors (t = 8 symbols,
dmin = 17 symbols). One BCH code (left curve) is a (1156, 1024) code shortened from the
(2047, 1915) BCH code that can correct up to 12 soft errors in a codeword (t = 12 bits,
dmin = 25 bits). The other BCH code (right curve) is a (1145, 1024) code shortened from
the (2047, 1926) BCH code that can correct up to 11 soft errors in a codeword (t = 11 bits,
dmin = 23 bits). The LDPC code is a (1152, 1024) PEG code with column weight 3 and

14

girth 6. For each of min-sum decoding and sum-product decoding, the number of maxi-
mum iterations for the three lines is 10, 20, and 40 from top to bottom.

We can observe similar behaviors of RS code, BCH code, and LDPC code as in Figure 6.
The gain of sum-product decoding over min-sum decoding becomes even smaller than in
Figure 6. Comparing Figures 5, 6, and 7, the gain of sum-product decoding over min-sum
decoding increases as the code length increases at a fixed code rate. In particular, the gain
from the 2-kbit code to the 4-kbit code is very large, whereas the gain from the 1-kbit code
to the 2-kbit code is small.

JPL has designed structured LDPC codes based on protographs and circulants [15,16]. This
construction enables high-speed decoder implementations because the component pro-
tographs that are the building blocks to the bigger code graph can be decoded in parallel.
The structure of the protograph then determines the threshold and error floor of the over-
all code. Divsalar et al. [17] recognized that a protograph described by simple accumulate
and repeat operators can yield codes with sharp waterfalls and low error floors. We plot the
performance of the rate 4/5 information block size 1024-bit accumulate repeat-by-4 jagged
accumulate (AR4JA) LDPC code in Figure 8 and compare the performance to an equivalent
rate and length RS and BCH codes: (160, 128) RS code over GF(28), (1277, 1024) BCH code
shortened from (2047, 1794) BCH code that can correct up to 23 soft errors in a codeword
(t = 23 bits, dmin = 47 bits), and (1288, 1024) BCH code shortened from the (2047, 1783)
BCH code that can correct up to 24 soft errors in a codeword (t = 24 bits, dmin = 49 bits). As
with the PEG LDPC code, the AR4JA code outperforms the RS and BCH codes for high block
error rates.

Figure 7. Performance of a (1152, 1024) LDPC code; p (Ts) = q (Ts) = 4.17 × × 10–5; ll = lle = 10–3 error/bit/day and

Ts = 1/24 day. The number of maximum iterations of LDPC decoder per scrubbing were 10, 20, and 40.

0 200100

100

10–1

10–2

10–3

10–4

10–5

10–6

400300 600500 800700

Time, Number of Scrubbing Intervals

B
lo

ck
 E

rr
or

 R
at

e

RS BCH

LDPC
min-sum

LDPC sum-product

15

Figure 8. Performance of two (1280, 1024) LDPC codes (min-sum decodindg): an accumulate-repeat-by-4-jagged-

accumulate (AR4JA) LDPC code anda PEG LDPC code. All codes are rate-4/5; p (Ts) = q (Ts) = 4.17 × × 10–5;

ll = lle = 10–3 error/bit/day and Ts = 1/24 day. The number of maximum iterations of LDPC

decoder per scrubbing were 10, 20, and 40.

0 200

100

10–1

10–2

10–3

10–4

10–5

10–6

400 600 800

Time, Number of Scrubbing Intervals

B
lo

ck
 E

rr
or

 R
at

e

1000

RS BCH

LDPC
(PEG)

[squares] LDPC
(AR4JA)
[circles]

1200 1400 1600 1800 2000

We also simulated decoding of turbo product codes (TPC) on the same channel and plot
the performance curves in Figure 9. Again, we set both the soft and hard error rates to
10–3 error/bit/day and set the scrubbing interval to one hour. All codes in the figure have
rate-(8/9)2. The (1296, 1024) LDPC code is a PEG code with column weight 5 and girth 6
and decoded by running two iterations. The (1152, 1024)2 TPC comprises two constituent
(1152, 1024) LDPC codes as the row and column code. We denote the number of LDPC
decoding iteration by “L” and the number of turbo iterations by “T,” so (L1,T2) represents
one LDPC decoding and two turbo decoding iterations. We simulated 50 TPC codewords.
Again, the fluctuation at low bit error rate (BER) is due to lack of averaging over enough
TPC codewords.

We see that increasing the number of turbo iterations is more effective than increasing the
number of LDPC iterations when turbo decoding product codes. With only two LDPC and
two turbo decoding iterations, TPC began to outperform the (1296, 1024) LDPC code with
the same code rate. Effectively, TPC is a longer code and its performance shows.

V. Summary

To protect against radiation-induced errors in space, memory systems either store the same
information repeatedly in different memory locations or use a conventional ECC scheme
such as SECDED Hamming or RS codes. We developed a simple channel that models single

16

bit errors due to radiation, assuming bit errors occur independently from bit-to-bit. We
discussed the capacity of this channel. We showed that modern LDPC codes can be used
in place of conventional RS and BCH codes to improve the radiation tolerance of memory
modules. Instead of decoding hard (i.e., 0 or 1) bits, LDPC decoding uses soft information
provided by the channel. We showed how to compute soft symbol reliabilities on our chan-
nel for input to soft-decision LDPC decoders. We considered two LDPC code constructions:
one generated by progressive edge growth and the other is based on protographs and com-
pared their performances to equivalent rate and length RS and BCH codes. To obtain an
even stronger code, we looked at two-dimension product codes that have LDPC component
row and column codes. The simulation results suggest that LDPC codes can extend the
lifetime of memory systems over equivalent BCH or RS codes at relevant target block error
rates in a radiation environment.

References

[1] R. M. Goodman and M. Sayano, “The Reliability of Semiconductor RAM Memories
with On-Chip Error-Correction Coding,” IEEE Transactions on Information Theory,
vol. 37, no. 3, pp. 884–896, May 1991.

[2] A. M. Saleh, J. J. Serrano, and J. H. Patel, “Reliability of Scrubbing Recovery-Techniques
for Memory Systems,” IEEE Transactions on Reliability, vol. 39, no. 1, pp. 114–122,
April 1990.

0 5

10–2

10–3

10–4

10–5

10–6

10–7

10 15 20

Time, day

B
it

E
rr

or
 R

at
e

25

RS (162,128) 8 bit

LDPC (1296, 1024)

TPC (1152, 1024)2 (L1, T1)

TPC (1152, 1024)2 (L2, T1)

TPC (1152, 1024)2 (L1,T2)

TPC (1152, 1024)2 (L2, T2)

30 35 40 45

2,2

2,2

1,2

2,1

2,1

L

L

RS

RS
1,1

1,1
1,2

Figure 9. Performance of product codes; l = lle = 10–3; Ts = 1/24 day. All codes are rate-(8/9)2.

17

[3] P. P. Shirvani, N. R. Saxena, and E. J. McCluskey, “Software-Implemented EDAC Protec-
tion Against SEUs,” IEEE Transactions on Reliability, vol. 49, no. 3, pp. 273–284, Septem-
ber 2000.

[4] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano, “Data Integrity Evalua-
tions of Reed-Solomon Codes for Storage Systems,” Proceedings of the 19th IEEE Interna-

tional Symposium on Defect and Fault Tolerance in VLSI Systems (DFT04), Cannes, France,
October 2004.

[5] G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, and A. Salsano, “Fault-Tolerant Solid-
State Mass Memory for Space Applications,” IEEE Transactions on Aerospace Electronic

Systems, vol. 41, no. 4, pp. 1353–1372, October 2005.

[6] H. Kaneko, “Error Control Coding for Semiconductor Memory Systems in the Space
Radiation Environment,” Proceedings of the 20th IEEE International Symposium on Defect

and Fault Tolerance in VLSI Systems (DFT’05), Monterey, California, October 2005.

[7] T. C. MacLeod, R. Sayyah, W. H. Sims, K. A. Varnavas, and F. D. Ho, “Satellite Test of
Radiation Impact on Ramtron 512K FRAM,” 10th Annual Non-Volatile Memory Technol-

ogy Symposium (NVMTS’09), Portland, Oregon, October 2009.

[8] D. N. Nguyen, “Radiation Effects on NAND Flash Memories,” 10th Annual Non-Volatile

Memory Technology Symposium (NVMTS’09), Portland, Oregon, October 2009.

[9] S. Jeon, E. Hwang, B. V. K. Vijaya Kumar, and M. K. Cheng, “Investigation of Memory
Protection Using Low-Density Parity-Check (LDPC) Codes,” 10th Annual Non-Volatile

Memory Technology Symposium (NVMTS’09), Portland, Oregon, October 2009.

[10] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum-Product
Algorithm,” IEEE Transactions on Information Theory, vol. 47, no. 2, pp. 498–519, Febru-
ary 2001.

[11] J. Li, K. R. Narayanan, E. Kurtas, and C. N. Georghiades, “On the Performance of High-
Rate TPC/SPC Codes and LDPC Codes Over Partial Response Channels,” IEEE Transac-

tions on Communications, vol. 50, no. 5, pp. 723–734, May 2002.

[12] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Progressive Edge-Growth Tanner Graphs,”
Proceedings of IEEE Global Communications Conference 2001 (IEEE GLOBECOM’01), vol. 2,
San Antonio, Texas, pp. 995–1001, November 2001.

[13] Z. Li and B. V. K. Vijaya Kumar, “A Class of Good Quasi-Cyclic Low-Density Parity
Check Codes Based on Progressive Edge Growth Graph,” Conference Record of the Thirty-

Eighth Asilomar Conference on Signals, Systems, and Computers, vol. 2, Pacific Grove,
California, pp. 1990–1994, November 2004.

[14] A. Vardy, “The Intractability of Computing the Minimum Distance of a Code,” IEEE

Transactions on Information Theory, vol. 43, no. 6, pp. 1757–1766, November 1997.

[15] J. Thorpe, “Low-Density Parity-Check Codes Constructed from Protographs,” The

Interplanetary Network Progress Report, vol. 42-154, Jet Propulsion Laboratory, Pasadena,
California, pp. 1–7, August 15, 2003.
http://ipnpr.jpl.nasa.gov/progress_report/42-154/154C.pdf

http://ipnpr.jpl.nasa.gov/progress_report/42-154/154C.pdf

18

[16] K. S. Andrews, D. Divsalar, S. Dolinar, J. Hamkins, C. R. Jones, and F. Pollara, “The
Development of Turbo and LDPC Codes for Deep-Space Applications,” Proceedings of

the IEEE, vol. 95, no. 11, pp. 2142–2156, Special Issue on Technical Advances in Deep-
Space Communications and Tracking: part 2, November 2007.

[17] D. Divsalar, S. Dolinar, C. Jones, and J. Thorpe, “Construction of Protograph LDPC
Codes with Minimum Distance Linearly Growing with Block Size,” Proceedings of IEEE

Global Communications Conference 2005 (IEEE GLOBECOM’05), St. Louis, Missouri, No-
vember 2005.

