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In space, radiation particles can introduce temporary or permanent errors in memory sys-
tems. To protect against potential memory faults, either thick shielding or error-correcting 
codes (ECC) are used by memory modules. Thick shielding translates into increased mass, 
and conventional ECCs designed for memories are typically capable of correcting only a 
single error and detecting a double error. Decoding is usually performed through hard de-
cisions where bits are treated as either correct or flipped in polarity. We demonstrate that 
low-density parity-check (LDPC) codes that are already prevalent in many communication 
applications can also be used to protect memories in space. Because the achievable code 
rate monotonically decreases with time due to the accumulation of permanent errors, the 
achievable rate serves as a useful metric in designing an appropriate ECC. We describe 
how to compute soft symbol reliabilities on our channel and compare the performance of 
soft-decision decoding LDPC codes against conventional hard-decision decoding of Reed-
Solomon (RS) codes and Bose-Chaudhuri-Hocquenghem (BCH) codes for a specific memory 
structure.

I. Introduction

Errors in memories can be soft (i.e., transient) or hard (i.e., permanent) errors. Soft errors 
may be caused by energetic particles, coupling from power supply noise, or variability in 
device behavior. Typically, soft errors would produce only a single-cell malfunction. As 
memory building blocks shrink into the nanometer regime and when memories are used 
in space applications, the frequency of multiple-cell malfunction increases, and these error 
events can range from a few bit flips to hundreds of errors. In addition to soft errors, hard 
errors can occur both in manufacturing due to defects or lithography contaminants, and in 
use due to device wear-out or cosmic radiation.

For space applications, memories are either made radiation-hard by strong material shield-
ing or made radiation-tolerant through protection of error-correcting codes (ECCs). How-
ever, current radiation-tolerant approaches may not handle multiple bit errors elegantly or 
at all. For example, the Mars Exploration Rovers (MERs) adopted a single-error-correction 
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and double-error-detection code to protect memory accesses. This simple error detection 
and correction (EDAC) code cannot sustain an event with three or more bit errors. More-
over, the access period to selected memory modules on the MERs was about 90 ns, or on the 
order of 11 MHz, because the EDAC circuit was implemented on a radiation-hard chip and 
clock rates on these elements are limited. In this article, we consider modern low-density 
parity-check (LDPC) codes for memory systems. LDPC codes are capacity-approaching 
codes that are increasingly being adopted in communications systems ranging from wire-
less routers to space communications. However, LDPC codes have yet to be considered for 
protecting memories because well-performing short (less than 1 kbit information length) 
LDPC codes are hard to design and the complexity of iteratively decoding long LDPC codes 
is higher than the decoding of conventional codes. Decoding LDPC codes also uses soft 
symbol information provided by the channel, but memory outputs are generally treated as 
hard bits and not soft information. In order to obtain the full performance of soft-decision 
decoding LDPC codes, we introduce a technique to generate soft symbol information using 
parameters that indicate the strength of radiation and the period of rewrites of the memory 
contents. We show that LDPC codes can improve, when compared to conventional Reed-
Solomon (RS) codes, the reliability of commercial off-the-shelf (COTS) memory systems tar-
geted for space use.

ECCs for memories in space have been studied in literature. Goodman et al. [1] evalu-
ated single-error-correction (SEC) codes. Saleh et al. [2] investigated single-error-correction 
and double-error-detection (SECDED) codes. Shirvani et al. [3] proposed using RS codes 
to protect against data corruption in software. Cardarilli et al. [4] proposed an analytical 
method to calculate block error rates of RS codes for scrubbing memory systems. The same 
authors [5] also suggested adaptively increasing the length of RS codes to track changing 
radiation environments. Kaneko et al. [6] made measurements to characterize memory fail-
ure events in a radiation environment. Recently, MacLeod et al. [7] discussed a plan for a 
satellite test of a nonvolatile memory device. Nguyen and Irom [8] tested radiation effects 
on recently developed COTS NAND flash memory devices for both single-level cell and mul-
tilevel cell devices. The authors [9] demonstrated that 1-kbit LDPC codes can outperform RS 
codes in the memory systems in a radiation environment.

In this article, we extend the work described above. In Section II, we define a new channel 
to model both soft and hard errors in space and discuss the channel capacity of such chan-
nels briefly. In Section III, we apply RS, Bose-Chaudhuri-Hocquenghem (BCH), and LDPC 
codes to our memory model. For decoding LDPC codes, we derive the needed soft informa-
tion from our channel model. In Section IV, we compare RS, BCH, and LDPC code perfor-
mance in the targeted environment. In Section V, we summarize our work.

II. Model of Memory Systems

A. Channel Model

There are two types of errors in memory systems affected by radiation. A soft error is tem-
porary such that the memory content at the soft error location has been changed from the 
original but can be corrected. For example, ECCs can correct soft errors by updating the 
erroneous location with the correct value. Therefore, the number of soft errors can be de-
creased after the memory contents are overwritten by the ECC decoding output.



3

In contrast, a hard error is fixed such that the memory content at the hard error location 
cannot be changed. No new information can be written. The locations of hard errors can be 
detected and made known to the ECC decoder. Therefore, hard errors can be treated as era-
sures. The number of hard errors cannot be decreased even after the memory contents are 
overwritten by the ECC decoding output, and hard errors will only increase with time.

Scrubbing is an operation to refresh memory content with the ECC decoder output to cor-
rect errors. The scrubbing interval is the time between each scrubbing. A scrubbing interval 
is denoted by Ts in this article. The number of soft errors can be reduced after scrubbing 
whereas the number of hard errors cannot be decreased by scrubbing. The number of hard 
errors only accumulates. Frequent scrubbing or short scrubbing interval may keep error 
rates low over longer periods. However, frequent scrubbing leads to high hardware power 
consumption, which is unattractive in spacecraft.

A way to circumvent hard error locations is to write the corrected bits in undamaged loca-
tions after scrubbing. However, this scheme requires additional memories to store both the 
corrected bits and their locations. Moreover, the new bit locations and the data of addresses 
are also not immune to radiation effects. Since this scheme uses more redundant bits, the 
effectiveness of this scheme should be evaluated by comparing ECCs of lower code rates. 
Analysis and evaluation of this scheme is out of the scope of this article. We will focus on 
nominal scrubbing without relocating hard error bits.

Since the number of errors caused by radiation particles depends on the time interval T  
of the radiation exposure, our channel model depends on T , as seen in Figure 1(a). COTS 
memories are often used in spacecraft, but COTS memories do not provide soft informa-
tion per bit location during readback. The available information to the ECC decoder is the 
binary information and the location of hard errors. We mark erasures as e and define the 
transition probabilities as follows:
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Equation (5) implies that a hard error always remains unchanged.

We label channels with p01 T^ h= p10 T^ h and q0 T^ h= q1 T^ h as symmetric channels and de-
fine the probability of soft error during time T  as

p T p T p T01 10= =^ ^ ^h h h

with the probability of hard error during time T  as

q T q T q T0 1= =^ ^ ^h h h

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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and the probability of no error during time T  as r T^ h. Thus,

p T q T r T 1= + =^ ^ ^h h h

Now we will derive these probabilities by the following reasoning. If there is no scrubbing, 
a cascade of two channel models over successive time intervals T1 and T2 must be equiva-
lent to one channel model over T1 + T2 as seen in Figure 1(b). Since we have a soft error if 
and only if there is only one soft error in T1 or T2  but no hard error, the soft error probabil-
ity over the interval T1 + T2 must satisfy

p T T p T r T r T p T1 2 1 2 1 2+ +=^ ^ ^ ^ ^h h h h h

Since we have a hard error if and only if there is a hard error in the first interval T1; or no 
hard error in the first interval and a hard error in the second interval  T2 , the hard error 
probability over the interval T1 + T2 must satisfy

q T T q T q T q T11 2 1 1 2+ = + -^ ^ ^^ ^h h hh h

We can obtain the following boundary conditions:
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since there is no error at the beginning and all the bits will eventually become hard errors.

Now we are ready to obtain p T^ h, q T^ h, and r T^ h by solving Equations (8), (9), and (10). 
One way is to solve differential equations by differentiating the equations with respect to 
the time variables and using the boundary conditions in Equation (11).

Figure 1. Channel model of a one-bit memory without scrubbing: (a) channel model; (b) two equivalent  

channel models. Each transition probability is a function of time. Hard error is denoted as e. 

If X = e, the memory bit is not usable due to the hard error.
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We obtained the following solutions for some nonnegative constants m and me:
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For a small time interval T %
2m + me
1 , we can approximate the soft error probability to 

p T^ h. mT  and the hard error probability q T^ h. meT . In this sense, m is called the soft error 

rate (the number of soft errors per bit per unit time), and me is called the hard error rate (the 
number of hard errors per bit per unit time). Strictly speaking, the unit for m and me is sim-
ply the inverse of time. However, error/bit/day is usually used for convenience. The soft 
error rates and the hard error rates are a measure of the radiation strength and its effects on 
memory systems.

In Figure 2(a), we see that the probability of hard error q T^ h increases monotonically, and 
the probability of no error r T^ h decreases monotonically. It might not be obvious why the 
probability of soft error p T^ h increases to the maximum and then decreases to zero. Fig-
ure 2(b) explains this behavior. In fact, the fraction of soft errors in the bits having no hard 
error increases monotonically from zero to half over time. The decrease of the probability of 
soft errors after the maximum is caused by the decrease of the probability of no hard error. 
Note that memory in our model can store no information at infinite time because p T^ h ap-
proaches 1/2, even if there is no hard error at all me = 0^ h, which is of the same property as 
an infinite cascade of binary symmetric channels.

We will show an example in which a cascade of L channel models with equal time intervals 

T/L is equivalent to a channel model over time interval T . We will have a soft error over 
time interval T  if and only if we have an odd number of soft errors but no hard error. There-
fore, we have the effective soft error probability over T
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have the same terms for even powers of p T/L^ h and the terms of opposite signs for odd 
powers of p T/L^ h,

(12)

(13)

(14)

(15)

(16)

(17)



6
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We have a hard error over L stages if and only if we have a hard error at a stage j  but no 
hard error until that stage. Therefore, we have the effective hard error probability over T

/ /

/

q T q T L q T L

q T L

e

T

1

1

/

effective
j

j

L

L

T L L

T

1

1

e

e

= -

-

m

m

-

=

-

-e

q

1

1

1

= -

= -

= -

=

_ _` _

_`

_

_

i ij i

ij

i

i

/

Therefore, a cascade of L channel models with equal time intervals T/L is equivalent to a 
channel model over time interval T .

In this section, we defined a channel model that is consistent over any time interval.

Figure 2. Probabilities of soft error, hard error, and no error without scrubbing as functions of time  

when lll = lle = 10–3 errors/bit/day: (a) probabilities; (b) conditional probabilities.
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B. Channel Capacity Without Scrubbing

We will calculate the channel capacity without scrubbing (intermediate processing) in time 
T. For the symmetric cases, the channel capacity for interval T  is

;

,
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As a check for correctness, we see that when p T^ h= 0, the capacity becomes 1 - q T^ h 
which is the capacity of the binary erasure channel (BEC) with erasure probability q T^ h
Similarly, if q T^ h= 0, the capacity becomes 1 -H p T^ h^ h, which is the capacity of the bi-
nary symmetry channel (BSC) with crossover probability p T^ h. For 0 1 p T^ h1 2

1  and 

0 1 q T^ h1 1, the channel model has smaller capacity than both the BEC with q T^ h and the 
BSC with p T^ h.

It can be shown that 
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where pme= 0 T^ h is the BSC crossover probability if the hard error probability were zero (i.e., 

me = 0), CBSC pme=0 T^ h^ h is the channel capacity of the BSC of crossover probability pme= 0 T^ h 
and CBEC q T^ h^ h is the channel capacity of the BEC of erasure probability of q T^ h. In other 
words, the overall capacity is the product of channel capacities of a BEC and a BSC.

C. Channel Capacity with Scrubbing

The channel capacity can be increased if we allow scrubbing over a time interval. We would 
expect that more frequent scrubbing will lead to a higher capacity. That is, if we use a 
shorter scrubbing interval, we can increase the code rate of the error-correcting code we use. 
Possible disadvantages of frequent scrubbing may include higher power consumption and 
shorter lifetime for flash memories due to wear-out effects.

The calculation of channel capacity with scrubbing is not straightforward. Although we 
may be able to calculate capacities asymptotically for infinite code length or infinite num-
ber of scrubbings, the capacity for finite code lengths and finite number of scrubbings re-
main as open questions in this article.
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III. Coding

A. Review of RS and BCH Codes

Suppose that we have an n,k^ h BCH code that can correct up to t bit errors per codeword 
if there is no bit erasure. The minimum distance of the BCH is dmin =2t+ 1. As long as the 
number of bit errors (soft errors) e and the number of bit erasures (hard errors) f  in a re-
ceived word are bounded by

e f t2 2#+

the correct BCH codeword can be found by the decoder.

For the pseudodecoding of BCH codes, if Equation (35) is satisfied for a received word, we 
assume that all the errors and erasures are corrected and the corrected codeword is rewritten 
into memory during scrubbing. Otherwise, we declare a decoding failure and no scrubbing 
is performed. Note that once the number of accumulated hard errors (bit erasures) reaches   
dmin - 1 in a codeword, no further errors (hard or soft) can be corrected.

Equation (35) also can be used for the pseudodecoding of an n,k^ h RS code over a Ga-
lois Field of size 2m where we map k information symbols into n codeword symbols 
and each field element is represented by m bits. This RS code can correct up to t sym-
bol errors if there are no symbol erasures and the minimum distance of the RS code is 

dmin = n- k+ 1 = 2t+ 1.

An RS symbol is considered erased if one or more bits that comprise the symbol are erased. 
An RS symbol is considered erroneous when one or more bits that comprise the symbol is 
in error and no erasures occur in the symbol. Therefore, we obtain the probability of hard 
symbol error (symbol erasure) during a scrubbing interval as

q T q T1 1s s s
m= - -^ ^^h hh

and the probability of soft symbol error (erroneous symbol) as

p T q T p T q T1 1s s s
m

s s
m= - - - -^ ^^ ^ ^^h hh h hh

The block error rates of RS codes can be calculated analytically by using the method provid-
ed in [4], if the probabilities of soft symbol error and hard symbol error are given. We also 
modified the method to analytically calculate the block error rates of BCH codes.

B. LDPC Codes

Soft information can be generated using radiation parameters and the scrubbing interval. 
The log-likelihood ratio (LLR) Lch y^ h  for a memory output y can be expressed in terms of 
the parameters in the channel model as follows:

(35)

(36)

(37)
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For symmetric channels, the LLR from the memory output can be simplified as
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These LLRs can be used not only in LDPC decoders but also in other soft decision decoders. 
Bit decisions are made based on the LLRs and the corrected bits can be used to update the 
soft errors but not the hard errors.

If we substitute p Ts^ h and r Ts^ h from Equation (12) for those in Equation (40), we obtain
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It is interesting to note that the hard error rate me is canceled out so that the LLR is 
independent of me for symmetric channels. In fact, it should not be a surprise since 

p Ts^ h/r Ts^ h= tanh mTs^ h is the ratio between the points on the two curves in Figure 2(b) at 
T = Ts.

For LDPC decoding, either sum-product decoding or min-sum decoding can be used. The 
two methods are summarized in [10]. The min-sum decoding is an approximation of sum-
product decoding and is less sensitive to the channel parameters in general.

C. Turbo Product Codes

We describe a product code in Figure 3. The code comprises horizontal codewords and  
vertical codewords. The overall code can be seen as an n1n2,k1k2^ h code. In contrast to a 
general single n1n2,k1k2^ h code, the product code can be decoded using the decoders of 
the constituent n1,k1^ h and n2,k2^ h codes, which are much less complex compared to the 
single-code decoder, especially when n1 and n2 are large. If n1 = n2, only one short decoder 
is needed. While using low-complexity decoders is an advantage, a disadvantage is the re-
quirement of additional memory to store extrinsic LLRs that are exchanged between the 
horizontal decoding and the vertical decoding. For example, for a 1-Mbit product code (i.e., 

n1n2 = 106), 7-Mbit memory overhead is necessary if a 7-bit LLR implementation is used. 
In such a case, if a 2-Gbyte memory is used, the fraction of overhead for LLR storage will be 
7 × 106/16 × 109 = 4.4 × 10–4, which is small.

(38)

(39)

(40)

(41)
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We illustrate the concept of turbo decoding of product codes in Figure 4. If the row (hori-
zontal) codes and column (vertical) codes are the same, a common decoder can be shared 
between the row decoding and the column decoding. If throughput is a critical require-
ment, multiple decoders can be employed. The decoding algorithm is similar to that in [11], 
where each LDPC decoder provides extrinsic LLRs directly rather than posteriors.

We define one turbo iteration as (column decoding)-(row decoding) and two turbo itera-
tions as (column decoding)-(row decoding)-(column decoding)-(row decoding).

IV. Results

Figure 5 shows the block error rates of equivalent RS, BCH, and LDPC codes with a message 
length of 4096 bits and a code rate 8/9. This figure shows that LDPC code with sum-product 
decoding provides significant advantage over not only conventional RS or BCH codes but 
also the same LDPC code with min-sum decoding. Before we discuss the results further, we 
will describe the simulation setup.

The horizontal axis represents elapsed time and its unit is the number of scrubbing inter-
vals. For example, 100 scrubbing intervals correspond to 100 hours when each scrubbing 
interval is 1 hour long. For the simulation, we used the probability of soft error and  
hard error as 4.167 × 10–5. These soft and hard error probabilities do not change as long 
as the products mTs and meTs remain the same. One combination is Ts = 1 hour and 

m = me = 10–3 errors/bit/day.

Figure 3. Product codes.

k2 Columns

n2 Columns

k 1 
R

ow
s

n 1 
R

ow
s 

Message Parity

Parity Parity

A codeword

A codeword



11

Figure 4. Turbo decoding of product codes.
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Note that this radiation parameter translates into a harsher condition than that meas- 
ured in space. Typically, m and me are in the range of 10–7 to 10–8 in space [6–8]. For 
m = me = 10–7, the results in Figure 5 correspond to the case of Ts =104 hours.

The vertical axis in Figure 5 denotes block error rates. A block error is declared when we ob-
tain either a decoding failure or an incorrect codeword estimate at the decoder output. We 
do not show results corresponding to fewer than 5 block errors.

The RS code is a shortened (462, 410) code over GF(210) that can correct up to 26 soft sym-
bol errors (t = 26 symbols, dmin = 53 symbols). Two BCH codes with code rates slightly 
above 8/9 and below 8/9 are plotted in Figure 5 since the BCH code with code rate exactly 
8/9 and the message length 4096 bits does not exist. The lines for the two codes are too 
close to each other to be distinguishable in Figure 5. One code is a (4603, 4096) code short-
ened from the (8191, 7684) BCH code that can correct up to 39 soft errors in a codeword  
(t = 39 bits, dmin =79 bits). Another code is a (4616, 4096) code shortened from (8191, 
7671) code that can correct up to 40 soft errors in a codeword (t = 40 bits, dmin = 81 bits). 
The block error rates obtained by the analytical method [4] for the RS code and our modifi-
cation for the BCH codes were identical to our simulation results.

The LDPC code used in Figure 5 is a (4608, 4096) code whose parity check matrix was gen-
erated by the progressive edge growth (PEG) method [12,13]. The column weight of the 
parity check matrix is 5 and the girth of the bipartite graph is 6. The minimum distance of 
this LDPC code is unknown, which is typical for most for LDPC codes. In general, comput-
ing the minimum distance of a binary linear code is an NP-hard problem [14]. RS codes and 
BCH codes have nice algebraic constructions in which the desired minimum distances are 
defined by design. For each of min-sum decoding and sum-product decoding, the number 
of maximum iterations for the three lines is 10, 20, and 40 from top to bottom.

We see that LDPC code with sum-product decoding provides significant gains over RS or 
BCH codes. Meanwhile, the advantage of LDPC code with min-sum decoding over RS and 
BCH codes decreases as target block error rates decrease and the advantage even disappears 
when the curves cross each other in low block error rates. The sum-product curves could 
cross the RS or BCH curves in the low block error rate region. However, if we assume that 
the slopes of the curves are maintained, the crossing point is expected to be at extremely 
low block error rates so that the LDPC code with sum-product decoding provides an advan-
tage over RS or BCH codes for practical applications.

The performance gain of sum-product decoding over min-sum decoding is related to the 
importance of the usage of the radiation parameters in the LLR determination in Equa-
tion (38).

Figure 6 shows the block error rates of equivalent RS, BCH, and LDPC codes with a message 
length of 2048 bits and a code rate 8/9. The simulation setup is the same as in Figure 5 ex-
cept for the length of the error-correcting codes. The RS code is a shortened (231, 205) code 
over GF(210 ) that can correct up to 13 soft symbol errors (t = 13 symbols, dmin = 27 sym-
bols). One BCH code (left curve) is a (2300, 2048) code shortened from the (4095, 3843)
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BCH code that can correct up to 21 soft errors in a codeword (t = 21 bits, dmin = 43 bits). 
The other BCH code (right curve) is a (2312, 2048) code shortened from the (4095, 3831) 
BCH code that can correct up to 22 soft errors in a codeword (t = 22 bits, dmin = 45 bits). 
The LDPC code is a (2304, 2048) PEG code with the column weight 3 and girth 6. For each 
of min-sum decoding and sum-product decoding, the number of maximum iterations for 
the three lines is 10, 20, and 40 from top to bottom.

We observe similar behaviors of RS code, BCH code, and LDPC code with min-sum decod-
ing as in Figure 5. Interestingly, the advantage of the LDPC with sum-product decoding is 
diminished significantly, so that even the sum-product decoding can be outperformed by 
BCH codes at block error rates below 10–5 if we assume that the slope of the curves is main-
tained. Therefore, for these 2-kbit codes, using LDPC codes can provide gains only if target 
block error rates are above about 10–5.

Figure 6. Performance of a (2304, 2048) LDPC code; p (Ts ) = q (Ts ) = 4.17 × ×  10–5; ll = lle = 10–3 error/bit/day and 

Ts = 1/24 day. The number of maximum iterations of LDPC decoder per scrubbing were 10, 20, and 40.
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Figure 7 shows the block error rates of equivalent RS, BCH, and LDPC codes that can  
contain 1024 bits of message at code rate 8/9. The simulation setup is also the same as in 
Figure 5 except for the length of the error-correcting codes. The RS code is a shortened  
(144, 128) code over GF(28) that can correct up to 8 soft symbol errors (t = 8 symbols, 
dmin = 17 symbols). One BCH code (left curve) is a (1156, 1024) code shortened from the 
(2047, 1915) BCH code that can correct up to 12 soft errors in a codeword (t = 12 bits, 
dmin = 25 bits). The other BCH code (right curve) is a (1145, 1024) code shortened from 
the (2047, 1926) BCH code that can correct up to 11 soft errors in a codeword (t = 11 bits, 
dmin = 23 bits). The LDPC code is a (1152, 1024) PEG code with column weight 3 and 
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girth 6. For each of min-sum decoding and sum-product decoding, the number of maxi-
mum iterations for the three lines is 10, 20, and 40 from top to bottom.

We can observe similar behaviors of RS code, BCH code, and LDPC code as in Figure 6. 
The gain of sum-product decoding over min-sum decoding becomes even smaller than in 
Figure 6. Comparing Figures 5, 6, and 7, the gain of sum-product decoding over min-sum 
decoding increases as the code length increases at a fixed code rate. In particular, the gain 
from the 2-kbit code to the 4-kbit code is very large, whereas the gain from the 1-kbit code 
to the 2-kbit code is small.

JPL has designed structured LDPC codes based on protographs and circulants [15,16]. This 
construction enables high-speed decoder implementations because the component pro-
tographs that are the building blocks to the bigger code graph can be decoded in parallel. 
The structure of the protograph then determines the threshold and error floor of the over-
all code. Divsalar et al. [17] recognized that a protograph described by simple accumulate 
and repeat operators can yield codes with sharp waterfalls and low error floors. We plot the 
performance of the rate 4/5 information block size 1024-bit accumulate repeat-by-4 jagged 
accumulate (AR4JA) LDPC code in Figure 8 and compare the performance to an equivalent 
rate and length RS and BCH codes: (160, 128) RS code over GF(28), (1277, 1024) BCH code 
shortened from (2047, 1794) BCH code that can correct up to 23 soft errors in a codeword 
(t = 23 bits, dmin = 47 bits), and (1288, 1024) BCH code shortened from the (2047, 1783) 
BCH code that can correct up to 24 soft errors in a codeword (t = 24 bits, dmin = 49 bits). As 
with the PEG LDPC code, the AR4JA code outperforms the RS and BCH codes for high block 
error rates.

Figure 7. Performance of a (1152, 1024) LDPC code; p (Ts ) = q (Ts ) = 4.17 × ×  10–5; ll = lle = 10–3 error/bit/day and 

Ts = 1/24 day. The number of maximum iterations of LDPC decoder per scrubbing were 10, 20, and 40.
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Figure 8. Performance of two (1280, 1024) LDPC codes (min-sum decodindg): an accumulate-repeat-by-4-jagged-

accumulate (AR4JA) LDPC code anda PEG LDPC code. All codes are rate-4/5; p (Ts ) = q (Ts ) = 4.17 × ×  10–5; 

ll = lle = 10–3 error/bit/day and Ts = 1/24 day. The number of maximum iterations of LDPC 

decoder per scrubbing were 10, 20, and 40.
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We also simulated decoding of turbo product codes (TPC) on the same channel and plot 
the performance curves in Figure 9. Again, we set both the soft and hard error rates to 
10–3 error/bit/day and set the scrubbing interval to one hour. All codes in the figure have 
rate-(8/9)2. The (1296, 1024) LDPC code is a PEG code with column weight 5 and girth 6 
and decoded by running two iterations. The (1152, 1024)2 TPC comprises two constituent 
(1152, 1024) LDPC codes as the row and column code. We denote the number of LDPC 
decoding iteration by “L” and the number of turbo iterations by “T,” so (L1,T2) represents 
one LDPC decoding and two turbo decoding iterations. We simulated 50 TPC codewords. 
Again, the fluctuation at low bit error rate (BER) is due to lack of averaging over enough 
TPC codewords.

We see that increasing the number of turbo iterations is more effective than increasing the 
number of LDPC iterations when turbo decoding product codes. With only two LDPC and 
two turbo decoding iterations, TPC began to outperform the (1296, 1024) LDPC code with 
the same code rate. Effectively, TPC is a longer code and its performance shows.

V. Summary

To protect against radiation-induced errors in space, memory systems either store the same 
information repeatedly in different memory locations or use a conventional ECC scheme 
such as SECDED Hamming or RS codes. We developed a simple channel that models single 
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bit errors due to radiation, assuming bit errors occur independently from bit-to-bit. We 
discussed the capacity of this channel. We showed that modern LDPC codes can be used 
in place of conventional RS and BCH codes to improve the radiation tolerance of memory 
modules. Instead of decoding hard (i.e., 0 or 1) bits, LDPC decoding uses soft information 
provided by the channel. We showed how to compute soft symbol reliabilities on our chan-
nel for input to soft-decision LDPC decoders. We considered two LDPC code constructions: 
one generated by progressive edge growth and the other is based on protographs and com-
pared their performances to equivalent rate and length RS and BCH codes. To obtain an 
even stronger code, we looked at two-dimension product codes that have LDPC component 
row and column codes. The simulation results suggest that LDPC codes can extend the 
lifetime of memory systems over equivalent BCH or RS codes at relevant target block error 
rates in a radiation environment.
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