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This paper finds a rigorous asymptotic expression for the number of stable points of
an infinite-range spin glass with independently identically distributed (i.i.d.) zero-mean
gaussian exchange interactions. The result also applies to the number of stable points of a
Hopfield Memory (a kind of associative memory] when the memory connections are i.i.d.
zero-mean gaussians. The result is that the number of stable points is asymptotic to a
constant slightly larger than 1 times 2 to a power slightly larger than n/4, where n is the
number of spins in the glass, or the length of the n-tuples to be remembered by the
memory. The answer is easily derived using simple asymptotic techniques from an exact
expression for the probability that an arbitrary 1 n-tuple of spins is a fixed point. This
expression is obtained from the fact that any distribution of joint zero-mean gaussians of
given covariances is specified solely by these covariances. This is a far shorter derivation

of the result than those existing.

l. Introduction

A spin glass (Ref. 1) can be identified with n-tuples of £1°s,
called spins o;,, 1 <i< n. Spins { and j({# /) interact via an
exchange interaction symmetric matrix J = (J,j). Spin / “influ-
ences” spin j via Jy, and j influences I likewise via Jy; = Jy;
Ji; = 0, 1 < i< n. This means that, in the absence of other
interactions, spin value o; changes to (or remains equal to) the

value

n
0, = Sgn( J,.joj ¢))
=1

where the Sgn of a nonzero real number is its sign. We ignore
the possibility that the sum in Eq. (1) is O, for this event will
have probability 0 in our model, where the J,j,i?é J, are inde-
pendent identically distributed (i.i.d.), zero-mean gaussian,
n(n- 1)/2 in number. Thus o;= *1 accordingly as Z;Ll
Jy0; is positive or negative. An n-tuple of £1’,

o= (01:U2s"'50n)

is then a fixed point of the spin glass specified by the n X n
symmetric matrix

=Wy
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“provided

ie.,

o, = 0,1<i<n )

We ask, if the J;, i # j, are zero-mean ii.d. gaussian (of posi-
tive variance), what is the expected number of fixed points in

Eq.(2?

Another formulation is to find the number of stable points
of the Hopfield Memory (Ref. 2). In this, n-tuples o of +1°s are
input to an electronic device that connects each input to each
other input via a conductance Jy;, where J;; = J;, and all J, are
zero. The n resulting voltages

Jl’

are each hard-limited to become the new o n-tuple, but again
the changes occur at random rather than at synchronous times.
See Ref. 3 for further details on the Hopfield Memory and its
potential capacity as an associative or content-addressable
memory in processing systems.

From Eqgs. (1) and (2), ¢ is a fixed point if and only if
Sgn (Z ; j) =0, 1<i<n 3)

This is also the-fixed point formula if all components change
at once; the difference between the two concepts of fixed
points is not relevant in what follows.

ll. Reduction to a Positivity Condition

We claim that the probability that ¢ be a fixed point is the
same for all o. This is because all the probabilities are equal to
the one for o= (1,1, - - -, 1). Merely replace J;; by J;; Sgn(a,) *
Sgn(o;) so that Eq. (3) can be rewritten

g,
on ( ( ZJ” Sgn(0,) Sen(o,) "_‘ngqaj) / Sgn(ai)) =,
] .
4
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In Eq. (4), o/Sgnoj =1,1<j <n,and 0, 5gn(0;)=1. So

Eq. (4) can be written
Sgn (/Z J,-,- Sgn(o,) Sgn(qj,)) =1,1<j<n
(%)

Thisis Eq. (3) withall 0, = +1 and J;; replaced by the n(n - 1)/2

random variables
Jl.j Sgn(o,) Sgn(oj)
identically distributed with the J,;.

The expected number of fixed points F,, is then the prob-
ability that the all 1’s n-tuple is fixed, times the number of

n-tuples 27:
1
= 2"pr(EJii>O 1<;<n) (6)
7=1

Here we recall that the J; =J;,; are n(n - 1)/2 independent
zero-mean gaussians of the same positive variance, which we
takeas 1;J,=0,1<i<n.

A7)

lIl. Covariances

What is the Covariance Matrix of two row sums of J,

and

X, =) T, 1

The means are 0, because each J; has mean 0. The variances
(k=1)are

E (Xf) =n-1 (7)
because there are n - 1 independent random variables being
added, each of variance 1 (recall J;; = 0, all 7).

What is Cov(X;, X, ), i k? We claim that any two rows of

the symmetric matrix J of exchange interactions has exactly
one J-random variable in common, so that the rest are inde-



pendent. If we write the J,, always with x <y, row { (with the
0 being in position ) is

(J11J2t o .Jz'—l,i O']i,z'+1 o 'Jin)

while row k is

o, J

kYo 0J )

Jk-l,k K, k+1 kn

We can let i<k without loss of generality. Then the only
random variable in common between the two rows is Jg,
by inspection. So

Cow(X,,X,) = E(XX,) = 1,i#k ®)

This is because the cross terms

EU,J. ) = EU,

Jen) = BT ) = EU0,) = 0

ip kr

in every other case, because they involve mean-0 independent
random variables.

IV. Equivalent Gaussians

Any n zero-mean gaussians of the same variances (Eq. (7))
and covariances (Eq. (8)) will do just as well (Ref. 4, Sec. 9.3)
in order to find the probability

p, = pr(Xl.>0,1<i<n)

This, from Eq. (6), is 27" times the desired answer F, for the
expected number of fixed points of the random gaussian spin
glass:

F, =2"pr(X,>0,1<i<n) =2"p, 9

Here is another way of getting zero-mean gaussians of the

same covariances (Eqs.(7) and (8)). Let ¥, ¥;, -+, Y, be
n + 1 independent mean-O variance-1 gaussians, Let

S, =/n-2Y Y 1<i<n (10)

These are, of course, zero-mean joint gaussians (for n>>2).
What are their covariances?

We have

E($?) = (n=2)E(Y}) +1

the cross-terms v/#n — 2 E(Y,Y,) vanishing. Thus

an

E@S?) =n-1,1<i<n

Likewise,

| <i,k<sn,iFk

(N

(12)
\ 7/

From Egs. (7) and (8), the » gaussian random variables S, have
the same covariance matrix as the » guassian random varjables
X;, and so we may use them instead of the X; to calculate F,,
in Eq. (9). This we do in the next section.

V. Exact Answer
From Eq. (9), we want

F =2"pr(S,>0,1<i<n) = 2"p, (13)

n

From Eq. (10), this can be written (for n > 2) as
F, = 2" pr(Y,> Y Nn-2,1<i<n) (14)

Since the n+1 Y,’s are jointly independent, the n random
variables ¥, , Y, , -+, Y, are conditionally 'independent given
that Yy =». So

pr(Y, > YO/\/n -2,1<i<nl|Y, =y) = [QUy/[V/n-2)]"
(15)

by the conditional independence. Here Q is the righthand tail
of the standard gaussian:

0@z) = J“zl_;fw e~ ar (16)

We can average Eq. (15) over y, which has the standard
gaussian distribution, to get the unconditional probability
that Y, > Yy \/n - 2,1 <i<n.The result (for n > 2) is

p, = pr(Y,2Y Nn-2,1<i<n)

1 d n z ) —12/2
= — e dt
2 _[;_m ¢ ( n-2
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— - n 4
- -[M 0 (m) do() (17

This is exact. Forn=2,p, = 1/2 =pr(J;, > 0,J,, > 0). (This
follows without this method.}) We conclude that for n= 2,
there are F, =2 fixed points on the average. For n = 3, we use
n-2=1inEq. (17) to find

o0

e
p3=—f Q*(nyag(n = -EH| -1

f=co
Thus F3 = 8p; = 2 also.

VI. Asymptotic Forn:.
To find F,, for large n, let

s = tihn-2

in Eq. (17). The result is

n-2 2
N = 0" (9 e~ g

§=Zmp0

or

p, = )2 f_ [Q(s)e“zﬂ] "etas  (18)

This is now in a form ripe for the Laplace or saddle point
method (Ref. 5, Sec. 4.2), The method implies that for suit-
able functions g and 4 (the conditions are satisfied here with
en(s) = Q(s) e~s212, g(s) = es?), we have the asymptotic
equality

00 enh(so) F 57
e™) g5y ds ~———{ g(s - (19
e ( ) f_n g( 0) _h"(so)
In this,
S, = argmax h(s) = arg max " (20)

212

is to be the unique maximum, and we must have
n" (8,0 <0 21
conditions which we will check shortly,

Assuming all this, we have from Egs. (18) and (19) for »n
large

2 n 2
Py~ (Q(So) e—s°/2) es"/( 2 (log 0(s) e_s2/2))
ds?

S=S0
(22)
The next section shows
S = ~0.50605
-sgﬂ
O(s,) e = 0.61023
2 2 )
e / L (0g 0 e = 1.0505
ds* §=5
0
and so
p, ~ (1.0505)(0.6102)" (23)
From Eq. (13), then,
F o= 2" p,~ (1.0505)(1.22046)"
or, in more familiar form,
F_ ~(1.0505)202874" (24)

the desired result.

We note here that the exponent in Eq. (24) agrees with that
in Ref. 1. But Ref. 1 had at best a logarithmically asymptotic
answer, not a true asymptotic one, due both to minor errors
and to the method there. However, Ref. 6 has the correct
result, although the constants are not specifically worked out
and the proof is much more complicated (although more
generalizable) than the one given here.




Vil. Calculation Details

This last section gives some details of the calculations of the
preceding section and presents numerical results based on
evaluating Eq. (18). Note that there is a finite maximum for A
because Q(-o) = 1, Q) = 0, and A (to0) = -0, We have

h(s) = log Q(s) - 5%/2,8(s) = 5 (25)
Thus,
’ Z(S)
h (S) - a(—s-) -5 (26)
where

Z() = == et P @27)

1
2m

is the unit normal density function. From Eq. (26),

2
h"(S) - SZ(S;) (g(gs))) -1 (28)

To search for a maximum of 4(s), we set A'(s) equal to 0 in

Eq. (26) to obtain

Z(so)
Q(So)

=0 (29)

he ondition on s0 for the derivative A'(s,) to be zero. We

Lines dhhnd o0 N Nandinagg *
nen ina °0 < 0. Continuing, from Eq {28)

mm

et
h"(sy) = -2s2 -1<0 (30)

Thus, there is a unique maximum on (-o°,°) and the condi-
tions for Eq. (19) to hold are satisfied.

From Egs. (18), (19), (29), (30), and (9), we now know
that

2 2
2 - n
Fn~(\/:ﬂ—‘e 0/|s0|> eso/\/l+2sg 3D

So, what is s,? Calculations on a good personal computer
show

5, = —0.50605
2
2 -5 _
\/—;e flsgl = 1.22046
.s‘2
e /1 +2s3 = 1.0505 (32)

This completes the derivation of Eq. (24).

‘Table 1 gives comparisons between a numerical evaluation
of exact expression Eq. (17) times 2" with the asymptotic
formula Eq. (24). For n = 2 and 3, the exact answers, as we
saw in Sec. V, are both 2. Note how good the asymptotic
values for the expected number of fixed points are even for
small n.
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Table 1. Comparlson of asymptotic and exact values of F,

Fn

n Exact Asymptotic
2 2 1.56
3 2 1.91
4 2,40 233
5 2.90 2.84
6 3.53 3.47
7 4.29 4.24
8 5,23 5.17
9 6.37 6.31
10 7.76 7.70
20 56.69 56.48

100 4.72E8 4.72E8
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