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Ceramic Waveguides
C. Yeh,1 F. Shimabukuro,2 P. Stanton,1 V. Jamnejad,1 W. Imbriale,1 and F. Manshadi1

This article is an expanded version of an original article published in Nature
(April 6, 2000) entitled, “Millimeter/Submillimeter Wave Communications via Ce-
ramic Ribbon.” Finding a very low-loss waveguide in the millimeter-/submillimeter-
wave range has been a problem of considerable interest for many years. Researching
the fundamentals, we have found a new way to design a waveguide structure that
is capable of providing an attenuation coefficient of less than 10 dB/km for the
guided dominant mode. This structure is a ceramic (Coors’ 998 alumina) ribbon
with an aspect ratio of 10:1. This attenuation figure is more than one hundred times
smaller than that for a typical ceramic or other dielectric circular-rod waveguide.
It appears that the dominant transverse magnetic (TM)-like mode is capable of
“gliding” along the surface of the ribbon with exceedingly low attenuation and with
a power pattern having a dip in the core of the ribbon guide. This feature makes
the ceramic ribbon a true “surface” waveguide structure wherein the wave is guided
along, adhering to a large surface with only a small fraction of the power being
carried within the core region of the structure. Here, through theoretical analysis
as well as experimental measurements, the existence of this low-loss ceramic ribbon
structure is proven. Practical considerations, such as an efficient launcher as well
as supports for a long open ribbon structure, also have been tested experimentally.

The availability of such a low-loss waveguide may now pave the way for new
development in this millimeter-/submillimeter-wave range.

I. Introduction

This article is an expanded version of an original article published in Nature (April 6, 2000) entitled,
“Millimeter/Submillimeter Wave Communications via Ceramic Ribbon.” Ever since the discovery by Kao
and Hockman [1] that ultra-low-loss optical fiber can be made from pure silica through the elimination
of impurities, the ability to guide signals in the optical spectrum with very low attenuation loss has been
assured. There remains a spectrum from 30 GHz to 1000 GHz (called the millimeter-/submillimeter-wave
band), where low-loss waveguides are still unknown. Because of the presence of inherent vibrational ab-
sorption bands in solids [2–4], the elimination of impurities is no longer the solution for finding low-loss
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solids in this spectrum. High skin-depth loss [5,6] in this spectrum also eliminates the use of highly
conducting material. It thus appears that it might be a futile effort to search for ultra-low-loss solids as
ultra-low-loss waveguide material in this millimeter-/submillimeter-wave band.

The purpose of this article is to show a new way to obtain an ultra-low-loss waveguide structure for
this millimeter-/submillimeter-spectrum band, to show the theoretical foundation for this discovery and
experimental verification, to show why such a structure is a low-loss structure, and to display its low-loss
and power-guiding characteristics.

II. Theoretical Foundation

According to the theory of wave propagation along a dielectric waveguide, the attenuation constant,
α, of a dielectric waveguide surrounded by dry air is given by the following formula [7,8]:

α = 8.686π
(

1
λ0

)
(ε1R tan δ1) (1)

in dB/m, where

R =

∫
A1

(E1 ×E∗1) dA(
µ

ε0

)1/2 [∫
A1

ez × (E1 ×H∗1) dA+
∫
A0

ez × (E0 ×H∗0) dA
] (2)

Here, ε1 and tan δ1 are, respectively, the relative dielectric constant and the loss tangent of the dielectric
core material; µ and ε0 are, respectively, the permeability and permittivity of free-space; λ0 is the
free-space wavelength in meters; ez is the unit vector in the direction of propagation; A1 and A0 are,
respectively, the cross-sectional areas of the core and the cladding region; and (E1,H1) and (E0,H0)
are, respectively, the modal electric and magnetic field vectors of the guided mode in the core region and
in the cladding region. One notes that the factor ε1R is defined as the geometrical loss factor and the
attenuation factor, α, is directly proportional to it.

A. Normal-Mode Solution

The normal-mode fields for a given guiding structure are the eigenfields, which are obtained from the
eigenvalues and eigensolutions of the wave equation corresponding to the appropriate boundary conditions
[5,6]. The exact analytic solutions for a dielectric waveguiding structure are known only for a planar
dielectric slab, for a circular dielectric cylinder (such as a typical optical fiber), and for an elliptical
dielectric cylinder [7,8]. Numerical techniques, such as the finite-element technique [9], the finite difference
time domain technique [10], or the beam-propagation technique [11], must be used for other geometrical
shapes. Only hybrid modes with all six field components can be supported by non-circular dielectric
waveguides [7,8].

To find the normal-mode solution for arbitrarily shaped dielectric waveguides, an exact approach based
on the solution of Maxwell’s equations by the finite-element method is used. This method has been used
successfully to analyze single-mode optical waveguides [9–11]. According to this finite-element approach
[9–11], the governing longitudinal fields of the guided wave are first expressed as a functional as follows:
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 dx dy (3)

where

γ =
βc

ω

τp =
(γ2 − 1)
(γ2 − εp)

Here εp is the relative dielectric constant in the pth region; β is the propagation constant; ω is the
frequency of the wave; ez is a unit vector in the z direction; (x, y) are the cross-sectional coordinates;
and c is the speed of light in a vacuum. The symbol p represents the pth region when one divides
the guiding structure into appropriate regions. Minimizing the above surface integral over the whole
region is equivalent to satisfying the wave equation and the boundary conditions for Ez and Hz. In
the finite-element approximation, the primary dependent variables are replaced by a system of discrete
variables over the domain of consideration. There, the initial step is to divide the original domain into
many discrete subregions. For the present analysis, there are a number of regions in the composite cross
section of the ribbon waveguide for which the permittivity (dielectric constant) is distinct. Each of these
regions is made into a number of discrete smaller triangular subregions interconnected at a finite number
of points, called nodes. Appropriate relationships then can be developed to represent the waveguide
characteristics in all triangular subregions. These relationships are assembled into a system of algebraic
equations governing the entire cross section. Taking the variation of these equations with respect to the
nodal variable leads to an algebraic eigenvalue problem from which the propagation constant for a certain
mode may be determined. The longitudinal electric field, E(p)

z , and the longitudinal magnetic field, H(p)
z ,

in each subdivided pth region also are generated in this formalism. All transverse fields in the pth region
subsequently can be produced from the longitudinal fields. A complete knowledge of the fields can be
used to generate the geometrical loss factor according to Eq. (2). This is the method [9–11] we used to
generate all our theoretical results.

B. Geometrical Loss Factor

Examination of the fundamental equation [Eq. (1)] governing the attenuation constant of a dominant
mode guided by a simple solid dielectric waveguide surrounded by lossless dry air shows that it is de-
pendent on the loss factor and the dielectric constant of the dielectric material and the geometrical size
and shape of the guiding structure [7,8,12]. (See Fig. 1). Since the material loss factor and the dielectric
constant of a solid are fixed, the only way to reduce the attenuation constant is to find the proper cross-
sectional geometry of the waveguide. After performing a systematic study on a variety of geometries, our
research shows that a ribbon-shaped guide made with low-loss, high-dielectric-constant ceramic mate-
rial, such as alumina, can yield an attenuation constant for the dominant transverse magnetic (TM)-like
mode of less than 0.005 dB/m. (Two dominant modes with no cutoff frequency can be supported by
this ceramic ribbon structure [7,8]: a transverse electric (TE)-like dominant mode with most of its electric
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Fig. 1.  The geometrical loss factor e1R as a
function of the normalized cross-sectional area
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field aligned parallel to the major axis of the ribbon and a TM-like dominant mode with most of its
electric field aligned parallel to the minor axis of the ribbon.) As a comparison, at an operating frequency
band around 100 GHz, one finds the attenuation constant for the traditional Teflon dielectric waveguide
at 1.3 dB/m, for the usual metallic rectangular waveguide at 2.4 dB/m, and for the microstripline at
3 dB/m [13]. This remarkable low-loss behavior of a ceramic ribbon guiding the dominant TM-like mode
is shown in Fig. 1, where A is the cross-sectional area of the waveguide, ε1 is the relative dielectric
constant of the dielectric guide, and λ0 is the free-space wavelength. Dielectric ribbons with aspect ratios
of 10 and an alumina circular rod are considered. For the ribbon case, the geometrical loss factors for
the dominant TM-like (low-loss) and TE-like (high-loss) modes are obtained for three different dielectric
materials: alumina with ε1 = 10, quartz with ε1 = 4, and Teflon with ε1 = 2.04. The case for the alumina
circular rod is displayed for comparison purposes. It is seen that alumina ribbon supporting the TM-like
mode provides the most dramatic reduction in the geometrical loss factor as compared with that for the
alumina circular rod. Suitable choice of configuration and dielectric constant can significantly reduce
the geometrical loss factor for the TM-like mode. Several important conclusions can be drawn from the
results given in Fig. 1:

(1) Dramatically lower geometrical loss factors are obtained for a high-aspect-ratio ribbon
waveguide with a high dielectric constant. As an example, when the normalized cross-
sectional area, A(ε1−1)/λ2

0, is 0.4, the geometrical loss factor (as well as the attenuation
factor) for this ribbon supporting the dominant TM-like mode is about 140 times smaller
than that for a circular rod with the same cross-sectional area supporting the dominant
HE11 mode.

(2) To achieve this dramatically lower geometrical loss factor, the guiding structure must be
of ribbon shape with a high aspect ratio as well as a high dielectric constant, supporting
the dominant TM-like mode.
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(3) In the low-loss region, i.e., ε1R < 0.05, the geometrical loss factor curve for the 10:1
ribbon with dielectric constant ε1 = 10 supporting the TM-like mode is much flatter than
that for the circular rod supporting the HE11 mode, indicating that the geometrical loss
factor for the ribbon is insensitive to small deviations of the normalized cross-sectional
area of the ribbon while the geometrical loss factor for the circular rod is very sensitive
to size changes in the rod. This means the TM-like mode on the ribbon is a very stable
mode, not easily disturbed by any geometrical imperfections.

(4) Separation of the geometrical loss curves for the TE-like mode and the TM-like mode
becomes larger for a larger dielectric constant of the guiding ribbon. And, there is a
definite relationship between the geometrical loss curves for the TE-like mode and that
for the TM-like mode. These facts are very significant, because they can be used to devise
a fundamentally new way to measure the super-low-loss characteristics of the TM-like
mode guided along ceramic ribbon.

(5) Inspection of the expression for the geometrical loss factor, Eq. (2), shows that the
numerator term representing the electric field intensity within the dielectric waveguide
governs the magnitude of the geometrical loss factor. To minimize this factor, the electric
field intensity must be chosen to be as small as possible over the cross-sectional area of
the dielectric guide. It is noted that the TM-like mode on a ribbon structure provides
precisely this behavior while the opposite is true for the TE-like mode on this structure.
Thus, the TE-like mode yields a much higher geometrical loss factor than does the
TM-like mode.

C. Relationship Between Geometrical Loss Factors for the TE-Like Mode and the TM-Like Mode

Let us now investigate the relationship between the geometrical loss factors for the TE-like mode and
for the TM-like mode on a high-aspect-ratio ribbon. The ratio rα is introduced and defined as follows:

rα =
(ε1R)TE−like

(ε1R)TM−like
(4)

=
αTE−like

αTM−like
(5)

This ratio is displayed in Fig. 2, where A is the cross-sectional area of the waveguide, ε1 is the relative
dielectric constant of the dielectric guide, and λ0 is the free-space wavelength. It is seen that for high-
dielectric-constant ribbon material, such as ε1 = 10, the ratio may be quite high, implying that the
attenuation for the dominant TM-like mode and that for the dominant TE-like mode can be different by
two orders of magnitude. For example, when the normalized area A(ε1 − 1)/λ2

0 is 0.4, rα is about 88,
implying that the attenuation constant for the TM-like mode can be 88 times smaller than that for the
TE-like mode on the same ribbon structure. This relationship will be used (later) to measure the very
low attenuation factor for the TM-like mode on a ribbon.

D. External Field Decay Consideration

Having established theoretically the fact that the geometrical factor ε1R can be significantly reduced
with the choice of high-dielectric-constant core material for the waveguide as well as the choice of a thin
ribbon geometry, it is important to answer the question of whether even higher dielectric-constant mate-
rial can provide an even smaller (or better) ε1R factor. In order to answer this question, it is important
to mention that, for an open waveguide structure such as the dielectric waveguide, the field extent (or
field decaying rate) away from the guiding structure represents a very important measure of how well
the structure “guides” the wave. So, one must rephrase the question: For a given (same) field decaying rate
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away from the surface of the dielectric core, will a higher-dielectric-constant material yield a smaller
ε1R? Figure 3 is developed to address this question. In this figure, ε1R is plotted as a function of the
dielectric constant of the core for a fixed decaying rate of unity normalized to the free-space wavelength
for the exterior field from the core surface. (This decaying rate means that the exterior field would
have been reduced by 1/e at one free-space wavelength from the guiding surface. Our experiment shows
that the guided field is still very well bonded to the guiding structure at this decaying rate.) It is
seen that ε1R initially reduces very rapidly as the dielectric constant is increased, reaching a minimum
between 10 and 14. Then, ε1R increases very gently for further increase in the dielectric constant. Hence,
core material with a dielectric constant of around 10 appears to be the preferred choice. For a smaller
normalized decaying rate (i.e., for weaker guidance), the curve in Fig. 3 moves lower and shifts slightly
towards a higher dielectric constant. This implies that ε1R can be made even smaller, but at the expense
of much weaker guidance. In that case, somewhat higher dielectric-constant material should be used to
obtain the lowest value of ε1R. Keeping the normalized decaying rate higher than unity, the choice of
alumina with a dielectric constant of 10 appears to be the optimum.

Having established theoretically that there exists a low-loss geometry for a dielectric waveguide, we
must verify this discovery experimentally.

III. Experimental Verification

It is known that the cavity resonator method provides a very sensitive and accurate way of measur-
ing the attenuation of very low-loss waveguides [14]. For the present case, the resonator used for the
experimental measurements consists of a dielectric waveguide placed in a parallel metallic plate cavity.
A swept signal frequency is transmitted through the waveguide cavity and is detected by a network ana-
lyzer. The signals are coupled through very small (below cutoff) holes in the circular gold-plated reflectors.
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The plates (15.24 cm in diameter) are much larger than the field extent outside the dielectric waveguide. A
picture of this resonator is provided in Fig. 4. The output is a series of narrow transmission resonances at
f1, f2, · · · , fm with half-power bandwidths ∆f1,∆f2, · · · ,∆fm, respectively. Here, the symbol f represents
frequency. At each resonant frequency, the guide wavelength is given by

λgm =
2L
m

(6)

and Q is given by

Qm =
fm

∆fm
(7)

where m is an integer number representing the mth resonance, and the integer m also represents the
number of guide half-wavelengths at a particular resonant frequency.

With careful alignment of the dielectric ribbon waveguide and the shorting plates, the primary loss
mechanisms to be considered are the wall losses and the dielectric loss. It is known [14] that

1
Qm

=
1
Qd

+
1
Qw

(8)

Here, Qm is the measured Q of the mth mode; Qd is the contribution of cavity Q due to dielectric
waveguide loss, which is independent of the length, L, of the cavity; and Qw is the contribution of cavity Q
due to the metal-wall losses of the shorting plates and the coupling losses. These losses are linearly
proportional to the length L of the cavity. For the various dielectric waveguides of interest, the calculated
Qw ranges from 10,000 L to 20,000 L, where L is the cavity length in centimeters. Experimentally, the
effect of the wall losses, whether due to the coupling or to the ohmic dissipation, on the cavity Q could
not be detected provided that Qd < 30, 000, i.e.,

Qw À Qd (9)

Under this condition, Q = Qd.
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Fig. 4.  The alumina ribbon waveguide resonator with small, below-cutoff coupling
holes in the gold-plated parallel plates at the ends of the white alumina ribbon.
This setup is used to measure the Q for the TE-like or TM-like mode supported by
the alumina ribbon.  In the background is the HP 8510 measuring instrument with
the display of a resonant curve.

A. Relation Between a and Q

The relation between α and Q has been derived earlier [15]:

α = 8.686
(
vp
vg

)(
β

2Q

)
(10)

=
(

8.686π
Q

)(vg
c

)( 1
λ0

)
(11)

in dB/m, where β is the propagation constant of the mode under consideration; vp is the phase velocity
of that mode; vg is the group velocity of that mode; c is the speed of light in a vacuum; and λ0 is the
free-space wavelength. For the hybrid HE(even) (TM-like) or HE(odd) (TE-like) mode on a dielectric
waveguide such as the dielectric ribbon, explicit analytic relations for β, vp, and vg do not exist [7,8]. They
may, however, be obtained numerically for that mode. It can be shown [14] that, for the dominant hybrid
mode, at low frequencies or small β, vp ≈ vg, and, again, at very high frequencies or large β, vp ≈ vg.
So, the relation α = 8.686(β/2Q) is applicable to the dominant hybrid modes at very low frequencies or
at very high frequencies. The more general expression, Eq. (10), must be used for all other frequencies.

B. A New Way To Measure the Q of the TM-Like Mode

The relationship between the attenuation constants for the TM-like mode and the TE-like mode on a
dielectric ribbon has been found and is displayed in Fig. 2. Using Eq. (10), one finds
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rα =
(ε1R)TE−like

(ε1R)TM−like

=
(
αTE−like

αTM−like

)

=
(
QTM−like

QTE−like

)(
vgTM−like

vgTE−like

)
(12)

where vgTE−like and vgTM−like are, respectively, the group velocity of the TE-like mode and the TM-like
mode, and QTE−like and QTM−like are, respectively, the Q for the TE-like mode and the TM-like mode.

A specific example will now be considered. Plots of (QTM−like/QTE−like), (vgTM−like/vgTE−like),
(vgTM−like/c), (vpTM−like/c), (vgTE−like/c), and (vpTE−like/c) versus frequency for a dielectric ribbon
with an aspect ratio of 10 and cross-sectional dimensions of 0.0635 cm (thickness) × 0.635 cm (width) are
shown in Fig. 5, where QTM−like, vgTM−like, vpTM−like and QTE−like, vgTE−like, vpTE−like are, respectively,
the resonant Q, the group velocity, and the phase velocity of the TM-like and TE-like modes, and c is
the velocity of light in a vacuum. It is seen that the ratio (QTM−like/QTE−like) for an alumina ribbon can
vary from a high of 42 at 30 GHz to 15 at 40 GHz. This means that, for a low-loss alumina ribbon with
a loss tangent of 0.00005, if QTE−like is measured at 22,760 at 30 GHz (this Q value is well within the
measurement capability of our apparatus), QTM−like must be 955,900 (this Q value is well beyond the
measurement capability of any known room-temperature resonant cavity apparatus). A sample of Coors’
alumina ribbon [16] with an aspect ratio of 10 and a cross-sectional area of 0.0635 cm × 0.635 cm and a
sample of an alumina rod [16] with the same cross-sectional area are pictured in Fig. 6.

Fig. 5. Ratios of QTM 
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CIRCULAR ALUMINA ROD
(0.244-cm diameter    91-cm long)

10:1 ALUMINA RIBBON
(0.0635-cm thick    0.635-cm wide)

Fig. 6.  A section of alumina ribbon with an aspect ratio of 10 and a section of
alumina circular rod with the same cross-sectional area.

The fact that there is a definite relationship between QTM−like and QTE−like is quite important. This
means that, knowing QTE−like, one may obtain QTM−like. Since QTE−like is normally much lower than
QTM−like for a high-aspect-ratio and high-dielectric-constant ribbon, it is much easier and more accurate to
measureQTE−like. This offers a new way to measure the very high values ofQTM−like for a low-loss alumina
ribbon, which, otherwise, may not be measurable due to the limitation placed by coupling and reflecting
plate losses. It is, therefore, important to verify this relationship or the ratio (QTM−like/QTE−like). For
ease of measurement and to assure that the measured parameters are well within the capability of our
apparatus, relatively higher loss ceramic ribbon samples are used. The sample is made by coating a
0.0635-cm × 0.635-cm × 11.43-cm low-loss alumina ribbon with a thin layer of carbon particles. (See
Fig. 7.) The thickness of the layer controls the loss tangent of the sample, which will govern how high the
Q will be. The parameters QTM and QTE are measured separately, and the ratio (QTM−like/QTE−like) is
then obtained. As an example, the measured resonant curves for the TM-like mode and the TE-like mode
are given in Fig. 8. From this figure, one obtains the following: At 38.8 GHz, QTM−like(measured) = 1943
and QTE−like(measured) = 123. So, at 38.8 GHz, the ratio QTM−like/QTE−like(measured) = 15.79 while
QTM−like/QTE−like(theory) = 15.8. At 32.7 GHz, QTM−like(measured) = 5046 and QTE−like(measured) =
170. So, at 32.7 GHz, the ratio QTM−like/QTE−like(measured) = 29.7 while QTM−like/QTE−like(theory) =
31. These excellent agreements between measured values and theoretical values show the correctness of
the derived theoretical ratio QTM−like/QTE−like. This relationship can be used reliably to obtain QTM−like

when QTE−like is known or vice verse. As will be demonstrated in the following, this realization is very
important in providing direct measurement on the attenuation constant for very low-loss alumina ribbon
supporting the low-loss TM-like mode.

This technique will now be used to measure the Q and the attenuation constant for the TM-like mode
on ultra-low-loss alumina ribbon. Three batches of alumina material samples were obtained from the
Coors Ceramic Company [16]. Batch one, made from Coors’ Superstrate 996 S20-71 (99.6 percent, Hirel,
thin-film substrate), contains ribbons with dimensions of 0.0635 cm × 0.635 cm × 11.43 cm. Batch
two, made from a Coors’ extruded 998 alumina (99.8 percent alumina) rectangular rod, contains rib-
bons with dimensions of 0.0635 cm × 0.635 cm × 91.44 cm. Batch three is a Coors’ extruded 998
alumina (99.8 percent alumina) circular rod with dimensions of 0.244 cm (diameter) × 91.44 cm (length).
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10:1 ALUMINA RIBBON
WITH SHIPLAP ENDS

10:1 ALUMINA RIBBON
WITH A THIN LAYER OF CARBON

Fig. 7.  A section of alumina ribbon coated with a thin layer of dried India ink (carbon
powder) to induce higher loss and a section of alumina ribbon with shiplap ends to
facilitate the connection between sections of alumina ribbon.  The shiplap end is
basically a 0.635-cm-long step, machined to a thickness of one-half the thickness of
the ribbon.

Numerous repeated measurements were made on these samples at various frequencies within the frequency
band from 30 to 40 GHz using the waveguide resonator technique described above. Typical results are
given in Table 1. (See also Fig. 9.)

The uncertainty in the measured value is due to the uncertainty of the alignment with the coupling
holes, the uncertainty in the flatness of the ribbon ends, and the uncertainty of the uniform thickness
of the ribbon, etc. Since batch 3 contains a 91.44-cm-long circular alumina rod, the guiding property of
the dominant mode is independent of the orientation of the transverse electric field. Thus, QTE−like =
QTM−like for the circular rod. The importance of the geometrical factor is seen in the measured data. For
example, the attenuation constant for an alumina ribbon with an aspect ratio of 10 is 0.0096 dB/m at
30 GHz while that for an alumina circular rod with the slightly larger cross-sectional area is 1.17 dB/m,
which is 121 times larger, even though the alumina material for the circular rod is 30 percent less lossy
than that for the ribbon. The measured results are displayed in Fig. 10, where excellent agreement
between the experimental data and theoretical results can be seen. For dielectric waveguides made with
alumina (ε1 = 10) or Teflon (ε1 = 2.04), the normalized cross-sectional area of these guides, A(ε1−1)/λ2

0,
is chosen to be 0.363, where A is the cross-sectional area, ε1 is the dielectric constant of the guide, and
λ0 is the free-space wavelength. The importance of the geometry of the guide is quite apparent from
the curves. It can be seen from this figure that, at 30 GHz, the attenuation constant for this ribbon is
0.0098 dB/m, or less than 10 dB per kilometer, which is 165 times less than that for the dominant mode
on an alumina circular rod with the same cross-sectional area. It is also 61 times less than that for the
dominant mode in a standard metallic rectangular waveguide (WR 28). A two-fold improvement to less
than 5 dB/km can easily be obtained for the ribbon if the same alumina material used for the circular
rod were used.
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Table 1. Measured Q and a.

Batch Frequency, αTM, tan δ
QTE−like QTM−like

number GHz dB/m (×10−4)

1 38.60 3, 860± 300 64, 700± 4, 800 0.062± 0.005 2.8± 0.21

1 32.80 3, 920± 290 121, 700± 9, 000 0.026± 0.002 2.8± 0.21

2 38.89 6, 480± 490 103, 700± 7, 800 0.035± 0.003 1.59± 0.12

2 32.98 7, 233± 540 216, 990± 16, 300 0.014± 0.001 1.59± 0.12

3 39.96 10, 948± 450 10, 948± 450 1.45± 0.09 1.0± 0.04

3 30.03 11, 117± 500 11, 117± 500 1.17± 0.08 1.0± 0.04
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Fig. 9.  Resonant curves for a 10:1 aspect ratio, Coors
ceramic Superstrate 996 alumina ribbon with dimensions
of 0.0635 cm    0.635 cm    11.43 cm supporting (a) a TE-
like mode with  Q TE = 3861 at 38.612 GHz and (b) a TE-
like mode with Q TE = 3918 at 32.821 GHz.
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(b) 1 = 32.821 GHz
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-25.685 dB

3 = 32.824 GHz
-24.774 dB
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IV. Practical Considerations

A. Experimental Evidence of Guidance by Ceramic Ribbon and Launching Efficiency

To show that guidance is indeed taking place along a ceramic ribbon, we have performed the following
experiment: Shown in Fig. 11 are two horns, one transmitting and one receiving, separated by a free-space
distance of 86 cm. A 120-ps pulse is emitted from the transmitting horn and is received by the receiving
horn after traversing through this free-space distance of 86 cm. Another experiment is performed wherein
a 91.44-cm-long ceramic ribbon waveguide is inserted between the horns. The horns are used to launch
and receive the guided wave. Special transitions are used to maximize launching and receiving efficiencies.
Launching (or receiving) efficiency of 84 percent (or a loss of less than 0.825 dB) at 39.86 GHz has been
measured for an exponential launching horn. (See Fig. 12, where total transmission loss as low as 1.65 dB
is obtained at 39.86 GHz. Most of this loss is due to launching (receiving) coupling loss. Propagation loss
along the ribbon is less than 0.05 dB.) The same 120-ps pulse is sent through this ceramic ribbon waveguide
structure. The received pulses for these two cases are displayed in Fig. 13, where the received pulse is
displayed as pulse A. When the same pulse is sent through the same experimental setup without the
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Fig. 10. Attenuation constant a for the low-loss
dominant mode in various guiding structures ver-
sus frequency in the Ka-band. Experimentally
measured values are displayed by data points
while theoretical results are displayed by curves.
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alumina ribbon waveguide, the received pulse through free space is displayed as pulse B. The amplitude of
pulse A is at least 21 dB larger than that of pulse B, proving that the alumina ribbon is indeed providing
guidance for the pulse. The slight delay in the arrival of pulse A also indicates that, due to wave guidance
by the alumina ribbon, pulse A is being guided by it and is propagating at the group velocity of the TM-
like mode on this structure. This guided group velocity is slower than c, the free-space group velocity, as
predicted and as shown in Fig. 5.

B. Support for the Open Ceramic Ribbon Waveguide

The ceramic ribbon waveguide is an open structure surrounded by dry air. How to support such a
structure is a problem of importance. One supporting structure appears to be most promising—support
made with plastic fish lines. (See Fig. 14.) Thin plastic (low-dielectric-constant) fish lines, spaced 10 cm
or longer apart, are strung across wooden rails separated by 5 cm (far enough apart so that the exterior
guiding field at the ribbon edges has decayed to negligible value). Ceramic ribbon waveguide can simply
be laid on top of the fish lines along the middle of the rails. The fish lines can amply support the ceramic
ribbon. Any perturbation caused by the fish line support on the propagation characteristics of the guided
TM-like mode on the ceramic ribbon waveguide is not detectable.
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(a)

(b)

Fig. 11.  Alumina ribbon waveguides with launching and receiving horns and cross-
sectional areas of 0.0635 cm    0.635 cm:  (a) 40.64-cm long, shiplap connected with four
pieces of 11.54-cm long alumina ribbon and (b) a 91.44-cm-long single piece.  The struc-
tures are being supported by a fish-line supporting section (shown in the setups).
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Fig. 12.  Transmission coefficient S12 for the dominant
TM-like mode as a function of frequency for the band from
30 to 40 GHz for the setup for an alumina ribbon
waveguide as shown in Fig. 11(b).
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Fig. 13.  A 120-ps pulse sent through the alumina ribbon
waveguide setup shown in Fig. 11(a), supporting the TM-
like dominant mode:  (a) 40-cm long and (b) 91-cm long.
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Fig. 14.  Details of the fish-line support.  A separation of about 5.1 cm
exists between the wooden rails, and a 3.81-cm clearance is present
from the floor.  These clearances are chosen so that the external sur-
rounding field for the guided mode would not be affected by the wood-
en frame.  Note also the almost seamless shiplap joints between sec-
tions of alumina ribbon.

FISH-LINE SUPPORT FOR
ALUMINA RIBBON

C. Joining Sections of Ceramic Ribbon Waveguides

Another problem of practical importance is how to join sections of ceramic ribbon waveguides. We
have discovered that a shiplap joint may be used to provide a strong connection between two ends of
ceramic ribbon. A picture of the shiplap joint is shown in Fig. 7. A quarter-inch-long section of the
jointing ribbon end is ground to a thickness of 0.032 cm, which is one-half the original thickness of the
ribbon. The jointing end of the other ceramic ribbon is prepared similarly. The ends are lapped together,
aligned, and then glued with “super glue,” resulting in a strong connection. No measurable loss due to
the joint is found.

V. Distribution of Guided Power and Discussion

To understand why the attenuation constant of the TM-like dominant mode is so much smaller than
that of the TE-like dominant mode on the same ceramic ribbon structure, why it is so much smaller
than that of the dominant HE mode on a circular ceramic waveguide [5,6] with the same cross-sectional
area, and why the dielectric constant of the guiding structure plays such an important role in the low-loss
guidance behavior, let us investigate the distribution characteristics of guided-power intensity for these
two dominant modes on this ribbon structure.

To demonstrate the dramatic difference between the power-guiding characteristics of the TM-like and
TE-like modes for a ceramic (high-dielectric-constant) ribbon waveguide and for a Teflon (low-dielectric-
constant) ribbon waveguide, Fig. 15 is generated. In it, the power distribution characteristics of the two
dominant modes (the TM-like mode and the TE-like mode) on a 10:1 aspect-ratio alumina ribbon with
ε1 = 10 and on a 10:1 aspect-ratio Teflon ribbon with ε1 = 2.04 are shown. The cross-sectional sizes
of these ribbons are chosen for single-mode operation at 40 GHz. The most distinguishing feature of
Figs. 15(a) through 15(d) is that, for TM-like mode guidance, there is a dip in the power intensity in the
thin alumina guiding ribbon. This distinctive feature is very much unlike the expected traditional feature
for guided-power distribution along a circular dielectric waveguide where the guided-power intensity of
the mode tends to peak in the middle of the guide and fall off as one moves away from the guide boundary.

17
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

OPERATING FREQUENCY = 40 GHz

Fig. 15.  Normalized power-intensity distribution for the dominant normal modes on 10:1 dielectric rib-
bon structures. The highest power intensity is in red and the lowest in blue:  (a) TM-like mode, alumina
ribbon, e1 =10, ribbon thickness = 0.0625 cm, (b) TE-like mode, alumina ribbon, e1 = 10, ribbon thick-
ness = 0.0625 cm, (c) TM-like mode, Teflon ribbon,  e1 = 2.04, ribbon thickness = 0.317 cm, and (d) TE-
like mode, Teflon ribbon, e1 = 2.04, ribbon thickness = 0.317 cm.

The traditional view is that this behavior remains regardless of how thin or small the guiding structure
becomes or how large the dielectric constant of the guide is.

Let us now consider the following questions.

Why is the attenuation constant for the TM-like mode so much smaller than that for the TE-like mode
on the same thin ceramic ribbon guide?

The dip in the power distribution inside the ribbon guide for the TM-like mode means that most of the
guided power is being carried in the lossless outside region while the mode is still firmly anchored to the
ceramic slab. The guided modal power drops to less than 1 percent of the power strength at the ribbon
boundary in less than 0.5λ0 = 0.38 cm away from that boundary. As shown in Fig. 15(b), the guidance
of the dominant TE-like mode along a ceramic ribbon follows the expected traditional manner discussed
above. The presence of high power intensity within the thin dielectric slab implies that the attenuation
constant of the TE-like mode is governed mostly by the loss tangent of the dielectric material and that
the ribbon is not a low-loss geometry for a TE-like mode.

Why is a circular ceramic guide not a low-loss configuration?

It is known that the dominant mode on a circular ceramic guide is a hybrid mode [5–8], i.e., all
six components of the electromagnetic fields are present. Calculation of the guided-power intensity
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distribution for the dominant mode [17] shows the traditional pattern with the guided-power intensity
peaking in the center of the guide and falling off radially as the distance from the guide increases. The
pattern persists as the radius of the guide becomes smaller. This behavior implies, in the same way as the
case of TE-like wave guidance along a thin ceramic ribbon, that the attenuation constant of the hybrid
mode on a circular ceramic guide is governed mostly by the loss tangent of the dielectric material and
that the circular ceramic guide is not a low-loss geometry for the hybrid mode.

Why is a lower dielectric-constant ribbon not a low-loss guidance structure?

To learn if the special power-intensity distribution that gives rise to the low-loss behavior of the domi-
nant TM-like mode along a ceramic ribbon remains for low-dielectric-constant polymer ribbon, Fig. 15(c)
is generated. In this figure, low-dielectric-constant Teflon slabs with ε1 = 2.04 are used. Unlike the case
for the TM-like mode propagation along a ceramic ribbon, a significant amount of power remains inside
the Teflon ribbon. This is seen by the amount of red and orange colors that remains within the core of
the Teflon ribbon. This means that a significant amount of attenuation for the TM-like mode is caused
by the power carried within the core region of the Teflon ribbon. So, even for the TM mode, the Teflon
ribbon is not a very good low-loss guidance structure as compared with the ceramic ribbon. Lowering the
dielectric constant of the ribbon appears to have a significant negative effect on preserving the low-loss
characteristics of a ribbon guide.

The guidance of the dominant TE-like mode along a ceramic ribbon follows the expected traditional
manner wherein the guided-power intensity of the mode tends to peak in the middle of the guide and
fall off as one moves away from the guide boundary. See Fig. 15(c). This behavior remains regardless of
how thin the ribbon becomes or how large the dielectric constant of the guide is. The presence of high
power intensity within the thin dielectric ribbon implies that the attenuation constant of the TE-like
mode is governed mostly by the loss tangent of the dielectric material and that the ribbon is not a low-
loss geometry for a TE-like mode. It appears that, for the TE-like mode, the general power-distribution
characteristics stay the same for high-dielectric-constant ceramic ribbon or for low-dielectric-constant
Teflon ribbon.

VI. Conclusion

A new ultra-low-loss dielectric waveguide for millimeter/submillimeter waves has been found. It is a
high-dielectric-constant ribbon with a dielectric constant of 10 and an aspect ratio of 10:1.

The measured data show that indeed the geometrical factor, ε1R, of a dielectric waveguide plays a very
important role in reducing the attenuation constant of a TM-like mode on a dielectric waveguide provided
that the dielectric constant is high and the loss tangent is low. It also is shown that the dielectric ribbon
is the preferred configuration for low-loss guidance. For example, for the same normalized cross-sectional
area, say A(ε1 − 1)/λ2

0 = 0.4, where A is the cross-sectional area of the dielectric waveguide and λ0 is
the operating frequency, the attenuation constant of the dominant TM-like mode on a 10:1 aspect-ratio
ribbon alumina waveguide is 140 times smaller than that on a circular alumina rod waveguide, even
though the same amount of alumina material was used to construct these waveguides. The significance of
the configuration factor is clear! With the data presented in this article, this fact has now been verified
experimentally.

In conclusion, one notes that the way in which power is guided along a high dielectric constant
(ε1 = 10) and the thin ribbon-like structure are instrumental in providing an attenuation constant for
the dominant mode of less than 10 dB/km in the 30- to 300-GHz spectrum range using Coors’ 998 pure
alumina material. The dominant TM-like mode is capable of “gliding” along the surface of the ribbon
with exceedingly low attenuation and with a power pattern having a dip in the core of the ribbon guide.
This feature makes the ceramic ribbon a true “surface” waveguide structure wherein the wave is guided
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along adhering to a large surface with only a small amount of power being carried within the core region
of the structure.

Just as the first 20-dB/km optical fiber made in the late 1960s produced a revolution in optical
communication, so may the attainment of 10-dB/km ceramic ribbon provide an opening to the 30- to
300-GHz communication world.
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