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The free-space channel is an ideal medium for communicating by means of spatially
and temporally coherent optical fields. Here we derive the structure of a coherent optical
receiver for M-ary signals assuming Poisson detection statistics. Receiver performance is
evaluated for an M-ary signal set consisting of orthogonal Walsh-functions under the
assumption of high-intensity symbol counts. The asymptotic performance bound is
examined in the limit as both the dimension of the signal-set and the receiver bandwidth
become arbitrarily large and it is shown that on the average a maximum of nearly three
bits of information can be encoded onto each received photon using the above modula-

tion scheme,

I. Introduction

In recent years, considerable effort has been devoted to the
problem of deep-space communication by means of modulated
optical fields (Refs. 1,2). Due to the inherently high gain of
diffraction-limited optical antennas, optical communication
systems offer the potential for high data-rate communication
over interplanetary distances. However, since optical fields are
susceptible to attenuation and distortion by the terrestrial
atmosphere, current efforts have concentrated on communica-
tion systems operating over the free-space channel, which
provides a distortionless medium for the propagation of opti-
cal fields. This type of free-space system could be imple-
mented by placing the optical receiver outside of the terrestrial
atmosphere (i.e., in Earth orbit) and relaying the received data

60

to ground by means of weather-independent RF data-links. In
space, the relay receiver observes undistorted optical fields,
and can therefore be designed to take advantage of the spatial
and temporal coherence of the received field. In the following
sections, we derive the structure and evaluate the performance
of an optical receiver that coherently combines the received
field with a locally generated optical field prior to photodetec-
tion, and attempts to retrieve the transmitted data by process-
ing the detector’s response to the combined field. We develop
a mathematical model for the detection process, derive the
structure of a maximum a posteriori (MAP) decoder and eval-
uate receiver performance for the case of orthogonal M-ary
signals based on the well-known Walsh functions, a signaling
scheme that allows for considerable simplifications in the
subsequent analysis.




il. Coherent Optical Receiver Model

The coherent optical receiver considered here adds a strong,
locally generated field coherently to the received optical field
prior to photodetection, as shown in Fig. 1. The received field
can be modelled as a plane-wave:

Up(t) = Upm(t) exp [} (2mt + (1)) )

where 27w is the radian frequency of the received field, Uy, is
the (real) field amplitude, m(z) is the modulation ([m(#)| < 1),
and ¢,(¢) is a random phase process associated with the
received field. Similarly, we model the local field as

U, (@) = U, exp [j 2mvt + ¢, ()] ()

where now U, is an equivalent (real) local field amplitude
referred to the receiver aperture, and ¢, () is again a random
phase process. The detector responds to the instantaneous
power of the sum field s(¢) by releasing free electrons from its
active surface. If the detector bandwidth is sufficiently great,
then for a given modulation function the detector output
process x(f) can be modelled as an inhomogeneous Poisson
process, represented by a sequence of randomly occurring
impulses. If the phase of the local field can be made to match
that of the received field (¢ () = ¢, (¥)), then the modulation
function m(?) gives rise to an intensity function A(¢), where

=1 2
M) =5 A 5@
.. |
= Ap (U2 +2U, Uym@) AN, +2 () (3)
where we have assumed that U, > > Up. (In Eq. (3) 7 is the

detector quantum efficiency, 4 is Planck’s constant, v is the
frequency of the optical field and 4 is the area of the collect-

_ing aperture.) The count intensity therefore contains a con-

stant term due to the local field and a modulation-dependent
term due to the crossproduct of the local and received fields.

Let the duration of each symbol be T seconds, and consider
the time interval [0,T). Assuming an infinite bandwidth detec-
tor, the output process can be represented as a sequence of
randomly occurring impulses. With & such impulses occurring
in [0, T), a particular sample function of the output process
can be represented as

0 ; k=0
x(t) = 4)

k
E 8(z-t) ; k=1
n=1

Following Snyder (Ref. 3) we define the “sample function
density” for this inhomogeneous Poisson process as

T
exp [~f A(t)dz‘] ; k=0
0

k T
H)\(z‘n)exp[—f ?\(t)a't:] s k=1
n=1 0

(52)

px(0);,0<<T) =

or equivalently
T
px();0<<T) = exp {— f [Ne) = x() In A(®)] dt
0

(5b)

where Eq. (5b) follows from the sifting property of delta
functions. Note that for k= 0,x(¢) =0 in [0,T), and therefore

(5b) reduces to
T
exp < - f Nz) de
0

as in (5a).

illl. Decoding of M-ary Coherent Signals

Consider the case where the transmitter generates one of M
symbols in the time interval [0,7). If the ith symbol is trans-
mitted, the modulation function m;(¢) generates the ith
Poisson intensity A;(¢). Under the maximum a posteriori
(MAP) decoding criterion the decoder selects that symbol
whose probability, conditioned on the received sample func-
tion x(¢), is the greatest. Denoting the ith hypothesis by H,,
this requires computing Prob (&, |x(¢); 0<¢<T) for all{, and
selecting the hypothesis corresponding to the greatest poste-
rior probability. Letting P(H;) denote the a priori probability
of H;, and p(x(t); 0<< ¢t <T'|H;) denote the conditional sample
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function density, the decoder can equivalently compute
P(H) p(x(1);0 < 1 < TIH)p(e(t); 0 S 1 <T)

Keeping only hypothesis-dependent terms and taking the
natural log, the decoder evaluates
))
dt

r e
A= Yi+f x(t)In {1+ x
0 L

(6)

where

T
Y, = InP(H,) - f A, (t) dt
0

Based on Eq. (6), the MAP decoder for M-ary signals can be
implemented as shown in Fig. 2. Upon observing a particular
sample function of the detector output process x(¢), the
decoder multiplies this output by a set of hypothesis-
dependent logarithmic weighting functions, integrates for
T-seconds, adds the appropriate hypothesis-dependent bias
terms and selects the hypothesis corresponding to the largest
resulting value,

IV. Receiver Performance

The receiver structure derived in the previous section
applies to a general class of M-ary symbols, since no restric-
tions were imposed on the modulating functions (other than
the normalization condition [m(¢)| < 1). However, it is diffi-
cult to evaluate receiver performance for arbitrary modulation
formats and a priori probabilities. The analysis may be greatly
simplified for the case of equilikely orthogonal symbols gen-
erated by modulating functions that assume only a few dis-
crete values. For purposes of analysis, a ‘particularly simple
signal set consists of the set of orthogonal Walsh functions
{wal (i;¢)} which are defined and discussed in Appendix A.
Each function assumes the values *1 in a given T-second
interval. (We exclude the zeroth Walsh function wal (0; ¢) from
the signal set because it is dissimilar from all other Walsh
elements in that its average value is not zero, and would
therefore require special treatment in the analysis.) For equi-
likely Walsh symbols we let P(H;) = 1/M and m,(t) = wal (i;t),
in which case the i/th Poisson intensity function becomes
N@) =N+ A wal (G50),i=1,2,..., M. Now the decoder
computes only

T A
A, = f x(t)In (1+ —Xs*wal(i;t))dt (7
0 L
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because the additive bias no longer depends on which hypothe-
sis occurred.

Since x(#) is a sample function of a random process, its
weighted integrals A; are random variables. The second char-
acteristic function of these random variables may take on
either of two forms, depending on the relation between the
transmitted symbol and the weighting applied to the detector
output: if H;'is true, then let y;(w) denote the second
characteristic function of A;, and let y,,(c) denote the second
characteristic function of A,, £ # i. In order to determine
¥,(w), we note from the properties of Walsh functions that
x(¢) is a Poisson process with rate (A, +A,) for a total of T/2
seconds, during which time a weighting factor of

In (1+2,/7,)

is applied, while for the remaining 7'{2 seconds the rate param-
eter and weighting factor become (A, - A,) and

In(1-\/A)

respectively. Since intervals with different weighting factors
are disjoint, integration over these regions yields independent
weighted Poisson random variables. Hence, under H; we can
equivalently express A; as

T/ A,
f xt (@) In [1+—]dt

A

0

T A,

+f x (O In|1-—)dr
A
0 L

where x*(¢) is a Poisson process with intensity (A, + \,), and
x7(t) is a Poisson process with intensity (A, - A,). The char-
acteristic function for A; under hypothesis 7 therefore becomes
the product of the characteristic functions corresponding to
each integral in (8); hence the second characteristic function
can be expressed as

®)

Y (w) = InE {exp (wA,)}

=—-T)\ expl/wln 1+—-~)\s t+expljwin l—ﬁ -2
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A similar argument can be used to derive wm(cb). For this case
the Poisson intensity is still defined by the ith Walsh function,
but now the weighting depends on the £th Walsh function,
2+ 1. Now A, is obtained by integrating x(¢) over four disjoint
intervals of equal duration during which all four possible
combinations of count intensities and weights are assumed:

/4 A
H: A = f (@) n (1 +-i)dt
it A
0 L
TR A
+f x* () In (l - TS) dar
T/4 SR/
3T/4 A
+ f x () In (1 +-f—)dt
T/ L
r A
+ f x (D) 1n (1 - )\—S) dt (10)
3T/4 L

In this case y;, reduces to

T >\s
Yplw) = ??‘L exp {jwln {1+ —}\L
. >\S
+exp | jwin ( - TL—) - 11

In typical applications, the total power of the local field is
great enough to generate a high intensity process at the
detector output. Expanding the exponentials in (9) and (11)
and letting the intensity due to the local field become
arbitrarily large (\; — ) we obtain the limiting forms

(.02
by @)y ie GK)- <5 @K) (120

2
b @) =2 = (k) (12b)

where we define K as the average symbol count that would be
generated by the received field if it were direct-detected by the
same receiver:

=N 2
Ks "'ﬁ;’ARTUR

Equation (12a) is recognized as the second characteristic
function of a Gaussian random variable with mean value (4K)
and variance (4K), while (12b) cotresponds to a Gaussian
random variable with zero mean and variance (4K,). It follows
that as the average intensity A, becomes suitably great, the
random variables A; may be approximated by Gaussian ran-
dom variables with mean and variance as defined above.

The probability of correct decoding can be found by
computing the probability that given H,, A; exceeds all other
Ay, £ # i. Making use of the Gaussian approximation, the
probability of correct decoding, P(C), can be expressed as

oo 2
—(x - 4K )“/2(4K
P(C)=f axe " 2ORD
—oo \/21r(4KSi

s -y 2k | M D
~» 21(4K) (13)

while the symbol error probability becomes P(E) = 1 - P(C).
Equation (13) is well known in the context of M-ary
orthogonal signal detection in additive Gaussian noise, a
similarity that stems from the Gaussian approximation made
in Eq. (12). Assuming a photodetector quantum efficiency of
one (n =1), it is convenient to define the “photon information
rate” as p A (log, M)/K, which can be interpreted as the aver-
age information in bits encoded onto each detected photon
(Ref. 4). Since each symbol gives rise to (M/2)/(M-1) bit
errors, the average bit error probability Pg(E) can be expressed
as

—o0

1 2 10g2M M - 1)}
l-EErfc z + ——~—p—- (14)

where we recognized the relation between the bracketed term
in (13) and the complementary error function. Equation (14)
has been tabulated extensively in the literature (Refs. S, 6).
Figure 3 shows graphs of the average bit-error probability
Py(E) as a function of p for increasing M, obtained from the
tabulated values in (Ref. 6). Note that photon information
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rates of roughly 1 bit per photon can be achieved in the range
of bit error probabilities of interest (Pg(E) < 10-3) with sig-
nal sets of moderate dimension (25 <M < 210), The limiting
behavior of Pg(E) as the number of transmitted symbols
becomes arbitrarily large can be obtained from the correspond-
ing results derived for additive Gaussian noise by a simple
transformation of variables (Refs. 5, 6):

2<ln2
o

lim P,(E) =
Jim 5 (E)

<o

2
“£>1n2 15
oo 15)

It follows that arbitrarily low bit error probabilities can be
achieved as M approaches infinity, as long as the inequality
o < 2/In 2 == 2.89 bits/photon is satisfied. This implies that
when operating with wideband, high gquantum-efficiency
. photodetectors, the M-ary coherent optical system described
above can theoretically transfer several bits of information
per received photon on the average (depending on the required
bit error probability), but the limiting value of 2.89 bits/
photon cannot be exceeded, regardless of system complexity.

V. Conclusions

A coherent optical receiver model for M-ary orthogonal
signals has been examined. The structure of the MAP decoder
designed for arbitrary signals was developed, and receiver
performance evaluated for the special case of M-ary orthogonal
signals derived from Walsh functions. This specialization en-
abled the development of a mathematically rigorous solution
for receiver performance in the limiting case of high intensity
detection, where a Gaussian approximation could be invoked.
It should be emphasized, however, that these results also apply
to a more general class of orthogonal signals, as long as the
Gaussian approximation for the test random variables {A;} can
be justified. Receiver performance was evaluated in terms of
the “photon information rate” p, which is a measure of the
average information that can be encoded onto each detected
photon. The equivalent bit error probability depends both on
p and on the signal-set dimension M. It was found that reliable
communication could not be achieved at photon information
rates exceeding 2.89 bits/photon. However, reliable communi-
cation at photon information rates exceeding one bit per
photon appears feasible with M-ary coherent optical systems
employing high quantum-efficiency, wideband photodetectors,
if negligibly small optical phase error can be maintained. The
effects of phase error and of other external disturbances (such
as background radiation) on the performance of M-ary coher-
ent optical receivers remains to be examined in future studies.
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Appendix A
Properties of Walsh Functions

An extensive discussion of the properties of Walsh func-
tions can be found in Ref. 7. For our interest here, it is
convenient to define the Walsh functions wal (i;f) over the
interval [0, T), indexed by i. The Walsh functions can be
generated by the equation

wal @m +p;£) = (-1)lm21+p {wal (m ;20

+ (-1Y"*? wal (m 32 (t - 121))} (A-1)

p=0orl,m=0,12,...

where

1,0<t<T
wal (0;8) = (A-2)

0 ; elsewhere

In Eq. (A-1) [m/2] means “greatest integer less than or equal
to m/2.” As an example, let us generate wal (1;¢). This re-
quires setting m = 0, p = 1. Hence

wal (1;¢) = (—1){wal (0;2¢)- wal (0 12 (t——g-))} (A-3)
All subsequent elements are obtained from previous elements
by applying scaling, shifting and sign reversal operations.

The product of two Walsh functions is another Walsh
function:

wal (i ; Hywal (8; 1) =wal (i © £ ; 1) (A-4)

where © stands for modulo 2 addition of the indices
expressed in binary form. Note that the product of a Walsh
function with itself always yields wal (0; £).

Walsh functions are orthogonal and therefore obey the
relation
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T
%f wal (i; t)wal (£, 8)de =8, (A-5)
0

where 8, is the Kroenecker delta. Since each Walsh function
wal (7;1),i > 1 is orthogonal to wal (03), it follows that

T
f wal (i ;0)dt = 0;i=1 (A-6)
0

Therefore each of these functions assume the values +1 and -1
for exactly half the total duration, or T/2 seconds.

Consider any two Walsh functions wal (i;¢) and wal (£,7)
satisfying 7, € > 1, i < £. We maintain that a point-by-point
comparison yields all four possible combinations of +1 and -1
for exactly one quarter of the total duration, or T/4 seconds.
This assertion can be proven as follows: the product of any
two Walsh functions is another Walsh function, which must
assume the values +1 and -1 for equal lengths of time in order
to satisfy (A-6). The two Walsh components of the product
must therefore agree in sign for 7/2 seconds (to generate +1 in
the product) and disagree in sign for T/2 seconds (to generate
-1 in the product). Let d,, denote the total duration over
which both component Walsh functions agree in sign and are
positive, d__ denote the duration over which they agree in sign
and are negative, and likewise d_, and d,_ denote durations
over which the component functions disagree in sign. (Let the
first sign in the subscript refer to the Walsh function with the
lower index, i.) Cleatly, d,, +d__=d,_+d_, =T/2in order
for the product to satisfy (A-6). It remains to be shown that

d,,=d_=d,_=d__=THA (A7)

Let d,, = d__+ A for some A. Then it must be true that
d_,=d,_+ Ain order for wal (i;7) to satisfy (A-6), but we
must also have d,_ =d_, + A since wal (£,£) must also satisfy
(A-6). Hence A=0,and d,, =d__. A parallel argument shows
that d_, =d, _, and Eq. (A-7) follows.




