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The Gaussian beam technique has become increasingly popular for wideband
beam waveguide (BWG) design. However, it is observed that the Gaussian solution
is less accurate for smaller mirrors (approximately < 30X in diameter). Therefore, a
high-performance wideband BWG design cannot be achieved by using the Gaussian
beam technique alone. This article demonstrates a new design approach by iter-
ating Gaussian beam and BWG parameters simultaneously at various frequencies
to obtain a wideband BWG. The result is further improved by comparing it with
physical optics results and repeating the iteration.

I. Introduction

Geometrical optics (GO) is a well-known technique used
in the design of many beam waveguide (BWG) feed sys-
tems. A BWG feed system is composed of one or multi-
ple feedhorns with a series of flat and curved mirrors ar-
ranged so that power can be propagated from the horn
through the mirrors with minimum losses. Horns and
equipment can thus be located in a large, stable enclosure
at an accessible location. While GO is useful for design-
ing high-frequency or electrically large mirrors (approxi-
mately > 50X in diameter with —20 dB edge taper), some
BWGs may be operated at low frequency and have a mir-
ror size of only about 20 in diameter. Due to diffraction
effects, the characteristics of a field propagated between
small BWG mirrors (approximately < 20X in diameter)
will be substantially different from the GO field. There-
fore, the GO design is not suitable for a high-performance
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wideband BWG antenna with small BWG mirrors. The
Gaussian beam technique has become increasingly popular
for wideband BWG design. The Gaussian bearn mode is
an approximate solution of a wave equation describing a
beam of radiation that is unguided but effectively confined
near an optical axis. The zero-order mode is normally used
in the design. A major advantage of the Gaussian tech-
nique is the simplicity of the Gaussian formula, which is
easy to implement with negligible computer time.

G. Goubau gave the first mathematical expression of
Gaussian modes derived from the solution of Maxwell’s
equations described by a continuous spectrum of cylindri-
cal waves [1]. T. S. Chu developed the Fresnel zone imag-
ing principle of the Gaussian beam to design a pseudo-
frequency-independent BWG feed [2]. S. Betsudan,
T. Katagi, and S. Urasaki used a similar imaging tech-



nique to design large ground-based BWG antennas [3].
N. J. McEwan and P. F. Goldsmith developed a simple
design procedure based on the Gaussian beam theory for
illumination of reflector antennas where the reflector is
electrically small or in the near-field of a feed [4].

A comparison of scatter fields calculated by zero-order
Gaussian and physical optics (PO) solutions indicates that
the Gaussian solution is less accurate for smaller mirrors
(approximately < 30X in diameter). Therefore, a high-
performance wideband BWG design may not be achieved
by using the Gaussian beam technique alone. The purpose
of this article is to demonstrate a new design approach by
iterating Gaussian beam and BWG parameters to obtain
a wideband BWG feed. The result is further improved by
comparing the Gaussian beam results with the PO results
and repeating the iteration. Details will be described next.

Il. Design Geometry

The basic goal is to design a BWG feed system with
good performance from 2 to 32 GHz by utilizing mir-
ror sizes of 20X in diameter with edge taper —23 dB at
2.295 GHz (other frequencies may have different edge ta-
pers). It is also required that all feedhorns be placed in a
basement room below the azimuth wheel and track. The
feed system must provide a simultaneous operation capa-
bility and a fast response feed selection system. The ge-
ometry of the BWG antenna is shown in Fig. 1, where
M, M3, and Ms are curved mirrors and My, M4, and Ms
are flat plates. If Mg is a dichroic plate, an additional re-
flector and horn, beyond Mg, can provide dual frequency
simultaneous operation. All the flat plates are assumed
to be sufficiently large and are excluded from the design.
The BWG in Fig. 1 can be reduced to a horn and three
curved mirrors (Fig. 2) with curved mirrors replaced by
thin lenses. Let f; be the focal length and let D; be the
diameter of lens M; with edge taper —7; dB (i = 2, 3,
and 5). The horn and mirrors are separated by distances
L; (i =0, 1, 2, 3), with Ly representing the length of
the horn. Dy and Dgup are diameters of the horn and
the subreflector, respectively. R and D are the wavefront
radius of curvature and the —18-dB-beam diameter of
the Gaussian beam at the subreflector, respectively. The
—18-dB-beam diameter is defined as the diameter at which
the field amplitude has fallen 18 dB from its maximum
value.

Ill. Design Procedure

Different frequencies usually have different values of D.
The design goal is to have R and D be constant over the

design frequency range with acceptable spillover losses at
all mirrors and D = Dgygp. Three frequencies: 2.295 GHz
(S-band), 8.45 GHz (X-band), and 32.0 GHz (Ka-band)
are used in the design. Curved mirrors are arranged so
that the mirror system has a low cross-polarization. For a
different design frequency range, the S-, X-, and Ka-bands
can be replaced by low, middle, and high frequencies of the
band. Input parameters are operating frequencies, Dsus,
D,, D3, Ds, and maximum allowable spillover loss (or dB
edge taper) at each mirror. The relationship between Dy
and Ry is known. The rest of the parameters in Fig. 2
are unknown and are to be determined during the iter-
ation process. The desired ranges of some of the input
and output parameters need to be established. The ini-
tial values to start the iteration can be obtained by the
GO design that roughly fits to antenna structures or other
requirements.

The design procedure can be described as follows:

Step 1. The radius of curvature R and beam diameter D
at the subreflector are calculated starting from the horn
and proceeding through mirrors Ms, M3, and M to the
subreflector by using the zero-order Gaussian mode. De-
tails are shown in the Appendix. Let R,, R., and Ri,
(D, D;, and Dg,) be the radii of curvature (—18-dB-
beam diameters) at the subreflector calculated at S-, X-,
and Ka-bands, respectively. The unknown parameters are
iterated so that R, = Ry = Rg, and Dy = Dy = Dy, It
is quite easy to have R, = Ry, (as well as D; = Dig).
However, in many cases (due to structure constraints, size
of mirrors, etc.), the iteration cannot converge to the con-
dition R, = R; = Rjs. Instead, R, is usually greater
than R, and Ryq. Therefore, one might have to accept
R.s > Rr = Rka-

Step 2. The (R,, R;, Ria) and (D,, Dz, Dis) are re-
calculated by PO, a more accurate technique, with BWG
parameters obtained from Step 1. Recall that the Gaus-
sian solution predicts that R, = Ry = Rgq in Step 1, while
PO results show that R, > R; > Ri.. The beam diam-
eters from PO calculations are slightly smaller than the
Gaussian results at all frequencies (but the trend may not
be consistent for other cases). It is noted that the differ-
ences of R calculated from PO and Gaussian software are
larger at electrically smaller mirrors.

Step 3. In order to offset the discrepancy between Gaus-
sian and PO results, as indicated in Step 2, Step 1 is re-
peated and the unknown parameters are iterated so that
R, < Rs < Rpya, which are approximately the same
amounts as indicated in Step 2 but in the opposite sense
(“larger” in Step 2 results in “smaller” in Step 3). A nu-
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merical example will be provided shortly. A similar ad-
justment procedure is also applied for the beam diameters
D, D;, and Dy,.

Steps 2 and 3 can be repeated until an acceptable
result is achieved. For simplicity, only radii of curva-
ture at X- and Ka-bands are considered as examples
here. In Step 1, after millions of iterations, one obtains
Ry = Ri, = 476 in. The calculation in Step 2 by PO
software gives R, = 488 in. and R;, = 478 in. with
AR, =488 — 476 = 12 in. and ARy, = 478 — 476 = 2 in.
In Step 3, the goal is to iterate the unknown parameter so
that R, = 476 — 12 = 464 in. and Ry, = 476 -2 = 474 in.
When Step 2 is repeated with parameters recently ob-
tained from Step 3, the results are R, = 477 in. and
Ry, = 476 in. The radius of curvature R = 476.5 in. is
chosen for a dual-shaped reflector synthesis.

Table 1 shows a numerical comparison between Gaus-
sian and PO techniques of the BWG configuration shown
in Fig. 3. If the PO software is not available, one could
use data from Table 1, provided that the new BWG con-
figuration closely resembles the one in Fig. 3. It is noted
that discrepancies between PO and Gaussian results are
larger for electrically smaller diameters. The discrepan-
cies are less sensitive to the distance between mirrors as
long as they are in the Fresnel zone. In a design with the
minimum mirror diameter > 50, reasonably good perfor-
mance can be achieved by implementing only Step 1.

IV. Conclusion

The result from this design technique is shown in Fig. 3,
with fo = f3 = 2580 in. and fs = 220 in. The mir-
ror diameters are Dy = D3 = 105 in., D5 = 131.5 in.,
with their average edge tapers shown in Table 1. It is
noted that the design result shown in Fig. 3 is close to
the optimum performance. Some small performance sac-
rifices are made for cost, structure retrofit, maintenance,
and accessibility. Also, some S-band performance is sac-
rificed in order to achieve very good performances at X-
and Ka-bands. Spillover loss at each mirror is listed in
Table 2. The spillover loss is calculated by integrating a
scattered field calculated by the PO software, with the as-
sumption that there is no tube effect. It is observed from
Table 2 that energy is more confined well inside the BWG
at higher frequencies since the spillover loss is lower at
higher frequencies. Higher gain horns are needed for higher
frequencies. Aperture diameters of S-, X-, and Ka-band
horns are 4.57X, 10.02), and 15.44), respectively. One op-
erating mode for this antenna is simultaneous S-/X-band,
with the dichroic surface Mg reflecting S-band and passing
X-band. In another operation mode, Ms is flipped out of
the beam path, allowing Ka-band (32.0 GHz; as well as
X-band) to propagate to M;. Given that M7 is a dichroic
surface, simultaneous X-/Ka-band operation is achieved.
By simply rotating Ms, extra frequency bands can be used.
In 1993, the NASA Deep Space Network (DSN) will begin
construction of three 34-m BWG antennas based on this
high-performance design concept.
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Table 1. Radius of curvatures and beamwidths of fields at the subreflector and average
edge tapers of Mz, Mg, and Ms, as shown in Fig. 3

Average edge taper,

Frequency D, in. dB
band
Gaussian PO Gaussian PO %P Maj % 3
S 462.2 515.0 138.5 137.9 —-22 —-26 —-21
X 464.1 477.0 136.9 134.5 —29 —28 -32
Ka 473.7 476.0 133.7 133.0 -30 —28 -33

Table 2. Spillover loss of each mirror at 2.295, 8.45, and 32.0 GHz

Spillover losses, dB

Mirrors
2.295 GHz 8.45 GHz 32.0 GHz
M, 0.004 0.006 0.006
M, 0.051 0.015 0.014
Mj 0.018 0.017 0.017
My 0.017 0.005 0.004
Ms 0.075 0.005 0.005
Me 0.025 0.004 -
M7 - 0.003 0.004
Mg - - 0.003
Total 0.190 0.055 0.053
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Appendix

The purpose of this appendix is to show zero-order
Gaussian mode expressions used to compute fields from
a horn through a series of mirrors and ending at a subre-
flector.

A. From a Horn to a Mirror (a Thin Lens)

The beam radius and phase front radius of curvature
at the aperture of a corrugated horn are

wo = 0.32 DH (A—l)
and
/ D2
rg = L%I + TH (A-?)

respectively [2]. The beam radius is defined as the radius
at which the field amplitude has fallen 1/e of its maximum
values, where Dy and Ly are the diameter and length of
the corrugated horn, as shown in Fig. A-1. The radius of
curvature on the lefthand side of the thin lens M, is [5]:

Lg

r = (A-3)
14+ Lo/ro

a (1 + Lo/r0)2+ (ALO/WwSY

The beam radius at M; (which is the same on both
sides of the thin lens) is [5]:

w, = wo\/(l + Lo/rU) ‘4 (ALO/ww§)2 (A-4)

where Ly is the distance from the horn aperture to the
center of the lens (or mirror), and A is a wavelength of an
operating frequency.

The diameter and spillover loss of the lens M; with
—T1-dB edge taper are each [3]

D, =0.6786 w/T) (A-5)

and
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P =10 log;o(1 = e'0'23°3T1) (A-6)

Spillover loss in Eq. (A-6) is reasonably accurate for
design purposes. After the design is completed, more ac-
curate predictions of the spillover loss will be obtained by
direct integration of a scattered field computed by PO and
spherical wave expansion software. The radius of curva-
ture on the right-hand side of the lens M; can be obtained
from a thin lens relation

1 1 1

™ fi ™

(A7)

where f; is the focal length of the lens My, and = (as
well as r{) is defined to be positive when its phase front is
convex toward the lens surface.

B. Between Mirrors

Similar to Section A, the radius of curvature and
beamwidth at the left-hand side of M4 are

Ly

ry = (A-8)
1— 1—-Ly/r .
(1- Ll/r1)2+(x\L1/m.u12)
and
Wy = wl\/(l - Ll/r1>2 + (/\L1/7rw12>2 (A-9)

where L; is the distance between the two lenses. w; and
r1 are given in Eqs. (A-4) and (A-7), respectively. The
differences between signs in Egs. (A-3) and (A-8), and also
in Egs. (A-4) and (A-9) are due to a definition that a
radius of curvature of a Gaussian beam is negative when
1t 1s concave toward the direction of propagation (+Z2),
and r) is concave toward +Z as in Fig. A-2. The value
of r, obtained from Eq. (A-7) can be directly substituted
into Eqs. (A-8) or (A-9) without changing any of the signs.
The diameter and spillover loss of the lens M, for —75-dB
taper can be obtained from Egs. (A-5) and (A-6), with T}
replaced by T». It is noted that Ms can be a subreflector.
The calculations in Section B are repeated for all the rest
of the mirrors and the subreflector.



Fig. A-1. The geometry of a circular aperture corrugated horn
illuminating a thin lens.
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Fig. A-2. The gecmetry of a Gaussian beam between two lenses.
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