A Complex Symbol Signal-to-Noise Ratio Estimator and Its Performance

Y. Feria
Communications Systems Research Section

This article presents an algorithm for estimating the signal-to-noise ratio (SNR) of signals that contain data on a downconverted suppressed carrier or the first harmonic of a square-wave subcarrier. This algorithm can be used to determine the performance of the full-spectrum combiner for the Galileo S-band (2.2- to 2.3-GHz) mission by measuring the input and output symbol SNR. A performance analysis of the algorithm shows that the estimator can estimate the complex symbol SNR using 10,000 symbols at a true symbol SNR of −5 dB with a mean of −4.9985 dB and a standard deviation of 0.2454 dB, and these analytical results are checked by simulations of 100 runs with a mean of −5.06 dB and a standard deviation of 0.2506 dB.

I. Introduction

Current plans are for the performance of the full-spectrum recorder (FSR) and full-spectrum combiner (FSC) for the Galileo S-band (2.2- to 2.3-GHz) mission to be measured by running symbol-error-rate (SER) curves on the demodulated data. To do so, one needs to generate test signals at various points of the system, and the test signals must be consistent from one point to the other, which may be difficult. The measurement can only be done at the output of the demodulator, which means that if the demodulator is malfunctioning, other modules (e.g., the FSR or FSC) cannot be tested. Also, since test signals are needed, online testing is impossible.

To overcome the disadvantages of measuring the performance from the SER curves, one would like to directly measure the symbol signal-to-noise ratio (SNR) at various points of the system. This means that the symbol SNR has to be estimated through complex symbols. By complex symbols, we mean the real symbols at an offset frequency with in-phase (I) and quadrature (Q) components. This article presents a complex symbol SNR estimator that estimates the symbol SNR of data with I and Q components of a carrier and/or the first harmonic of a square-wave subcarrier. This SNR estimator can be used to measure the performance of the FSC as well as that of the complex symbol combiner for the Galileo S-band mission.

The technique of the complex symbol SNR estimator is similar to that of the split-symbol moments estimator [1,2], except with complex symbols rather than real ones. The idea behind splitting a real symbol into two halves and correlating them (originally suggested by Larry Howard [2]), is to get the signal power by correlating two halves of a symbol, where the signal parts of the two halves of
the same symbol are correlated but the noises on the two halves of the symbol are uncorrelated.

The same idea is applied here to the complex symbols, with the assumption that the offset frequency is known. The idea is to correlate the first half of a symbol with the complex conjugate of the second half of the same symbol, and then to take the real part to get the signal power multiplied by a factor that is a function of the offset frequency. This factor can be divided out if the offset frequency is known. The same step is repeated for \(N\) symbols, and the results are averaged to get a better estimate of the signal power.

The signal power plus the noise power can be obtained by averaging the magnitudes squared of the sums of the samples in a complex symbol over \(N\) symbols. The estimate of the SNR ratio is then readily obtained. In the next section, a brief description of the complex symbol SNR estimator is given.

Some practical problems are not considered here. For instance, the frequency offset may not be known and may not be a constant. Also, if the symbol synchronization is off, say by a sample, the performance of the estimator will be affected, and in the future, the effect needs to be quantified.

II. Brief Description of the Estimator

For given samples of I and Q components of baseband data with an offset frequency \(\omega_o\), we wish to estimate the symbol SNR. The I and Q components of the \(l\)th sample in the \(k\)th symbol are expressed as follows:

\[
y_{lI_k} = \frac{m}{N_s} d_k \cos (\omega_o l T_s + \phi_o) + n_{lI_k} \tag{1}
\]

\[
y_{lQ_k} = \frac{m}{N_s} d_k \sin (\omega_o l T_s + \phi_o) + n_{lQ_k} \tag{2}
\]

where

\[
l = 0, \ldots, N_s - 1
\]

\[
k = 1, \ldots, N
\]

Here \(N_s\) is the number of samples per symbol and is assumed to be an even integer, \(T_s\) is the sample period, and \(d_k = \pm 1\) is the \(k\)th symbol. The noise samples in the I and Q channels are assumed to be independent with zero mean and equal variance \(\sigma^2_n/N_s\). The true symbol SNR is

\[
\text{SNR} = \frac{m^2}{2\sigma^2_n} \tag{3}
\]

Presented here is an algorithm to estimate this symbol SNR. First, add all samples in the first half of a symbol for I and Q separately,

\[
Y_{\alpha I_k} = \sum_{l=0}^{N_s/2-1} y_{lI_k} \tag{4}
\]

\[
Y_{\alpha Q_k} = \sum_{l=0}^{N_s/2-1} y_{lQ_k} \tag{5}
\]

Repeat the first step for the second half of the symbol

\[
Y_{\beta I_k} = \sum_{l=N_s/2}^{N_s-1} y_{lI_k} \tag{6}
\]

\[
Y_{\beta Q_k} = \sum_{l=N_s/2}^{N_s-1} y_{lQ_k} \tag{7}
\]

Multiply the I component of the first half of a symbol by that of the second half; do the same for the Q components; and add the results. This is equivalent to taking the real part of the product of the first half and the complex conjugate of the second half of a symbol. Repeat the same procedure for \(N\) symbols, and average the results to obtain the parameter \(m_p\)

\[
m_p = \frac{1}{N} \sum_{k=1}^{N} \Re \{Y_{\alpha k} Y_{\beta k}^*\} \tag{8}
\]

where

\[
Y_{\alpha k} = Y_{\alpha I_k} + jY_{\alpha Q_k} \tag{9}
\]

\[
Y_{\beta k} = Y_{\beta I_k} + jY_{\beta Q_k} \tag{10}
\]
Take the magnitude squared of the complex sum of the two symbol halves, repeat for N symbols, and average the results to obtain m_{ss}

$$m_{ss} = \frac{1}{N} \sum_{k=1}^{N} |Y_{a_k} + Y_{b_k}|^2$$ (11)

Mathematical expressions for the complex symbol halves Y_{a_k} and Y_{b_k} and the parameters m_p and m_{ss} are given in Appendix A in terms of the underlying model parameters of Eqs. (1) and (2). Finally, use m_p and m_{ss} to obtain the estimated symbol SNR.

$$\text{SNR}^* = \frac{4m_p \text{sinc}^2 (\omega_s T_s/2)}{m_{ss} - m_p (2 + 2/\cos (\omega_s T_{xy}/2))}$$ (12)

where ω_s is the offset angular frequency, and T_{xy} is the symbol duration,

$$T_{xy} = N_s T_s$$

The estimate, SNR*, defined in Eq. (12) is shown in the next section to have an expected value equal to the true symbol SNR defined in Eq. (3), plus some bias that decreases with the number of symbols averaged. The variance of SNR* is also derived in the next section as a function of the number of symbols averaged and the true symbol SNR.

III. Mean and Variance of Symbol SNR Estimates

In Eq. (12), the estimate of the complex symbol SNR, SNR*, is a function of the random variables m_p and m_{ss}. Let g denote that function

$$\text{SNR}^* = g(m_p, m_{ss})$$ (13)

Assume that $g(m_p, m_{ss})$ is "smooth" in the vicinity of the point $(\bar{m}_p, \bar{m}_{ss})$, where \bar{m}_p and \bar{m}_{ss} are the means of m_p and m_{ss}, respectively. The expectation of the estimate, SNR*, can then be approximated by [3, p. 212]

$$E \{\text{SNR}^*\} \approx g(\bar{m}_p, \bar{m}_{ss}) + \frac{1}{2}$$

$$\times \left(\sigma^2_{mp} \frac{\partial^2 g}{\partial m_p^2} + 2 \text{cov} (m_p, m_{ss}) \frac{\partial^2 g}{\partial m_p \partial m_{ss}} + \sigma^2_{m_{ss}} \frac{\partial^2 g}{\partial m_{ss}^2} \right)$$ (14)

where σ^2_{mp} and $\sigma^2_{m_{ss}}$ are the variances of m_p and m_{ss}, respectively, and $\text{cov} (m_p, m_{ss})$ is their covariance. The variance of the estimate, SNR*, can be approximated by [3, p. 212]

$$\sigma^2_{\text{SNR}^*} \approx \left(\frac{\partial g}{\partial m_p} \right)^2 \sigma^2_{m_p} + \left(\frac{\partial g}{\partial m_{ss}} \right)^2 \sigma^2_{m_{ss}}$$

$$+ 2 \frac{\partial g}{\partial m_p} \frac{\partial g}{\partial m_{ss}} \text{cov} (m_p, m_{ss})$$ (15)

In Eqs. (14) and (15), all the partial derivatives and the covariance are evaluated at $(\bar{m}_p, \bar{m}_{ss})$. Expressions for the mean and variance of m_p, the mean and variance of m_{ss}, the covariance of m_p and m_{ss}, and the partial derivatives are derived in Appendices B through E, respectively. Substituting all the terms from the appendices into Eqs. (14) and (15), the mean and variance of SNR* are obtained,

$$E \{\text{SNR}^*\} = \text{SNR} + \frac{1}{N \cos^2 (z/2)}$$

$$\times \left[\frac{1}{C_1^2} + \text{SNR} \left(\frac{5}{4} - \frac{1}{4} \cos (z) \right) \right]$$

$$+ \text{SNR}^2 \frac{C_1^2}{4} (1 - \cos (z))$$ (16)

and

$$\sigma^2_{\text{SNR}^*} = \frac{1}{N \cos^2 (z/2)} \left[\frac{2}{C_1^2} + \text{SNR} \frac{4}{C_1^2} + \text{SNR}^2 \right.$$

$$\times \left(\frac{7}{4} - \frac{3}{4} \cos (z) \right) \text{SNR}^3 \frac{C_1^2}{4} (1 - \cos (z)) \right]$$ (17)
where

\[z = \omega_0 T_{sy} \]

and

\[C_1 = \frac{\text{sinc} \left(\frac{\omega_0 T_{sy}}{4} \right)}{\text{sinc} \left(\frac{\omega_0 T_s}{2} \right)} \]

IV. Analysis Verification

Two methods are used to verify the analytical results of the mean and the variance in the complex symbol SNR estimation:

1. Compare the numerical results of the analysis to simulation results.
2. Set the offset frequency to zero and compare the performance of the complex symbol SNR estimator and that of the real symbol SNR estimator.

A. Simulation Results

Simulation results for the mean and variance of SNR* are shown in Figs. (1) and (2), and are compared to the theoretical results of Eqs. (16) and (17). The analytical and simulation results are also compared in Table 1. In all cases, the offset frequency, \(f_0 = \omega_0 / (2\pi) \), is set at 20 Hz. The simulation results are based on 100 runs each, and the simulated means and variances are obtained by averaging over the 100 runs.

B. Special Case

A special case is when the offset frequency \(\omega_0 = 0 \). In this case, the performance of the complex symbol SNR estimator should reduce to that of the real symbol SNR estimator given in [1] and [5], with \(N \) samples of pure noise and \(N \) samples of the signal plus noise.

For this special case, the mean and variance of the complex symbol SNR estimates reduce to

\[E\{\text{SNR}^*\} = \text{SNR} + \frac{1}{N} (1 + \text{SNR}) \] \hspace{1cm} (18)

\[\sigma_{\text{SNR}^*}^2 = \frac{1}{N} (2 + 4\text{SNR} + \text{SNR}^2) \] \hspace{1cm} (19)

The analysis in [1], which assumed a constant signal level for all the samples, is easily extended to cover the case of a signal in only half the samples. The real symbol SNR and the real estimate, \(E\{\text{SNR}^*\} \), in Eqs. (17a) and (17b) of [1] are simply replaced by values SNR and \(\text{SNR}^* \), respectively, representing averages over the \(2N \) real samples. These average values are one-half the corresponding complex SNR and complex estimate SNR* defined here. With these correspondences, the mean of the real estimate in [1] reduces to

\[E\{\text{SNR}^*\} = \text{SNR} + \frac{1}{N - 1} (1 + \text{SNR}) \] \hspace{1cm} (20)

and the variance of the real estimate is

\[\sigma_{\text{SNR}^*}^2 = \left(\frac{N}{N - 1} \right)^2 \frac{1}{N - 2} \times \left[(\text{SNR}^2 + 2\text{SNR} + 1) + \frac{N - 1}{N} (2\text{SNR} + 1) \right] \] \hspace{1cm} (21)

For a large \(N \), Eq. (20) is equivalent to

\[E\{\text{SNR}^*\} = \text{SNR} + \frac{1}{N} (1 + \text{SNR}) \] \hspace{1cm} (22)

and Eq. (21) approximates to

\[\sigma_{\text{SNR}^*}^2 = \frac{1}{N} (\text{SNR}^2 + 4\text{SNR} + 2) \] \hspace{1cm} (23)

Comparing Eq. (18) with Eq. (22), and Eq. (19) with Eq. (23), it is clear that the special case of the complex symbol SNR estimator has the same performance as the real symbol SNR with \(N \) signal-plus-noise samples and \(N \) pure noise samples.

V. Conclusions

A complex symbol signal-to-noise ratio estimator is presented in this article. This estimator modifies the split-symbol moments estimator for estimating the real symbol SNR [2] in order to accommodate complex symbols, with the assumption that the offset frequency is known. This estimator can be used to measure the performance of the full spectrum combiner as well as the complex symbol combiner for the Galileo S-band mission.
Acknowledgments

The author would like to thank Sam Dolinar for his valuable contributions to this work and Steve Townes for his many valuable suggestions and helpful discussions. Special thanks are also due to Tim Pham for his great support of this work. The author is grateful to Jay Rabkin for drawing her attention to this problem.
Table 1. Simulation results of the complex symbol SNR estimation.

<table>
<thead>
<tr>
<th>SNR, dB</th>
<th>Mean of SNR*, dB</th>
<th>σ of SNR*, dB</th>
<th>N</th>
<th>N_s</th>
<th>Runs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theory</td>
<td>Simulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-1.9968</td>
<td>-2.0039</td>
<td>0.2956</td>
<td>0.2834</td>
<td>2,500</td>
</tr>
<tr>
<td>-2</td>
<td>-1.9984</td>
<td>-2.0136</td>
<td>0.2113</td>
<td>0.1937</td>
<td>5,000</td>
</tr>
<tr>
<td>-5</td>
<td>-4.9985</td>
<td>-5.0589</td>
<td>0.2454</td>
<td>0.2506</td>
<td>10,000</td>
</tr>
<tr>
<td>-8</td>
<td>-7.9986</td>
<td>-8.0437</td>
<td>0.3056</td>
<td>0.2787</td>
<td>20,000</td>
</tr>
</tbody>
</table>
Fig. 1. Means and standard deviations of the symbol SNR estimates.

Fig. 2. Standard deviations of the complex symbol SNR estimates.
Appendix A

Sums of the Halves of a Symbol and Definitions of \(m_p \) and \(m_{ss} \)

The sum of the first half of the \(k \)th symbol is

\[
Y_{\alpha k} = \sum_{i=0}^{N_s/2-1} \frac{m}{N_s} d_k e^{j(\omega_0 T_s i + \phi_c)} + n_{\alpha k}
\]

\[
= \frac{m}{N_s} d_k e^{j \phi_c} \frac{1 - e^{j\omega_0 T_s N_s/2}}{1 - e^{j\omega_0 T_s}} + n_{\alpha k}
\]

\[
= \frac{1}{2} m d_k e^{j(1/4\omega_0 T_{xy} - 1/2\omega_0 T_s + \phi_c)} \frac{sinc(\omega_0 T_{xy}/4)}{sinc(\omega_0 T_s/2)} + n_{\alpha k}
\]

\[
(A-1)
\]

and the sum of the second half of the \(k \)th symbol is

\[
Y_{\beta k} = \sum_{i=N_s/2}^{N_s-1} \frac{m}{N_s} d_k e^{j(\omega_0 T_s i + \phi_c)} + n_{\beta k}
\]

\[
= \frac{m}{N_s} d_k e^{j(\omega_0 T_s N_s/2 + \phi_c)} \frac{1 - e^{j\omega_0 T_s N_s/2}}{1 - e^{j\omega_0 T_s}} + n_{\beta k}
\]

\[
= \frac{1}{2} m d_k e^{j(3/4\omega_0 T_{xy} - 1/2\omega_0 T_s + \phi_c)} \frac{sinc(\omega_0 T_{xy}/4)}{sinc(\omega_0 T_s/2)} + n_{\beta k}
\]

\[
(A-2)
\]

where the noise terms, \(n_{\alpha k} \) and \(n_{\beta k} \), are complex Gaussian noises, with each of the components (real and imaginary) having a variance of \(\sigma_n^2/2 \). In terms of the in-phase and quadrature noise samples in Eqs. (1) and (2), the complex noise terms, \(n_{\alpha k} \) and \(n_{\beta k} \), are

\[
n_{\alpha k} = \sum_{l=0}^{N_s/2-1} (n_{l_{ik}} + jn_{Q_{ik}})
\]

\[
(A-3)
\]

and

\[
n_{\beta k} = \sum_{l=N_s/2}^{N_s-1} (n_{l_{ik}} + jn_{Q_{ik}})
\]

\[
(A-4)
\]

where \(j = \sqrt{-1} \).

Let \(s_{\alpha k} \) and \(s_{\beta k} \) denote the signal parts of \(Y_{\alpha k} \) and \(Y_{\beta k} \), respectively. Then \(Y_{\alpha k} \) and \(Y_{\beta k} \) can be expressed as

\[
Y_{\alpha k} = s_{\alpha k} + n_{\alpha k}
\]

\[
(A-5)
\]

and

\[
Y_{\beta k} = s_{\beta k} + n_{\beta k}
\]

\[
(A-6)
\]

The product of the sum of the first half of the \(k \)th symbol and the conjugate of the sum of the second half of the same symbol is

\[
Y_{\alpha k} Y_{\beta k}^* = s_{\alpha k} s_{\beta k}^* + s_{\alpha k} n_{\beta k}^* + n_{\alpha k} s_{\beta k}^* + n_{\alpha k} n_{\beta k}^*
\]

\[
= \frac{1}{4} m^2 e^{j(-\omega_0 T_{xy}/2)} \frac{sinc^2(\omega_0 T_{xy}/4)}{sinc^2(\omega_0 T_s/2)}
\]

\[
+ s_{\alpha k} n_{\beta k}^* + n_{\alpha k} s_{\beta k}^* + n_{\alpha k} n_{\beta k}^*
\]

\[
(A-7)
\]

Taking the real part of the product, one obtains

\[
\Re\{Y_{\alpha k} Y_{\beta k}^*\} = \frac{1}{4} m^2 \cos \left(\frac{\omega_0 T_{xy}}{2} \right) \frac{sinc^2(\omega_0 T_{xy}/4)}{sinc^2(\omega_0 T_s/2)}
\]

\[
+ \Re\{s_{\alpha k} n_{\beta k}^* + n_{\alpha k} s_{\beta k}^* + n_{\alpha k} n_{\beta k}^*\}
\]

\[
(A-8)
\]

Define \(m_p \) as

\[
m_p = \sum_{k=1}^{N} \Re\{Y_{\alpha k} Y_{\beta k}^*\}
\]

\[
(A-9)
\]
The sum of the whole kth symbol is

\[Y_k = \sum_{l=0}^{N_s-1} \frac{m}{N_s} d_k e^{j(\omega_s T_s l + \phi_s)} + n_k \]

where \(s_k \) and \(n_k \) are complex Gaussian noise with a variance of \(\sigma_n^2 \) in each component (real and imaginary), and

\[s_k = s_{\alpha_k} + n_{\alpha_k} \]

\[n_k = n_{\alpha_k} + n_{\beta_k} \]

Define \(m_{ss} \) as

\[m_{ss} = \sum_{k=1}^{N} |Y_k|^2 \] (A-15)

The sum squared of the kth symbol is

\[|Y_k|^2 = m^2 \frac{\text{sinc}^2 (\omega_s T_{sy}/2)}{\text{sinc}^2 (\omega_s T_s/2)} + |n_k|^2 + 2\Re\{n_k s_k^*\} \]

where

\[C_2^2 = \frac{\text{sinc}^2 (\omega_s T_{sy}/2)}{\text{sinc}^2 (\omega_s T_s/2)} \] (A-14)

where \(s_{Ik} \), \(s_{Qk} \), and \(n_{Ik} \), \(n_{Qk} \) denote the I and Q components of the signal and the noise in the kth symbol. Furthermore, \(Y_k \) can be expressed as

\[Y_k = s_{Ik} + j s_{Qk} + n_{Ik} + j n_{Qk} \] (A-13)
Appendix B

Evaluation of the Mean and Variance of \(m_p \)

All the expectations in the following are conditional on knowing the symbol synchronization.

\[
E\{m_p\} = \frac{1}{N} \sum_{k=1}^{N} E\{U_k\} = \frac{1}{N^2} \sum_{k=1}^{N} E\{U_k\}
\]

Because the \(\{U_k\} \) are independent, the variance of \(m_p \) can be computed as [4, p. 352]

\[
\sigma^2_{m_p} = \frac{1}{N^2} \sum_{k=1}^{N} \sigma^2_{U_k} \tag{B-2}
\]

Now let subscripts \(I \) and \(Q \) denote the in-phase and quadrature components of the signals. The second moment of \(U_k \) can be expressed as

\[
E\{U_k^2\} = \frac{\sigma_n^2}{2} E\{s_{\alpha I_k}^2 + s_{\beta I_k}^2 + s_{\alpha I_k} s_{\beta I_k} + s_{\alpha Q_k}^2 + s_{\beta Q_k}^2\}
\]

\[
= \frac{\sigma_n^2}{2} + E\{(s_{\alpha I_k} s_{\beta I_k} + s_{\alpha Q_k} s_{\beta Q_k})^2\}
\]

\[
= \frac{m^2 \sin^2(\omega_n T_{sy}/4)}{\sin^2(\omega_n T_s/2)} \frac{\sigma_n^2}{2} + \frac{\sigma_n^4}{2} + E\{(s_{\alpha I_k} s_{\beta I_k} + s_{\alpha Q_k} s_{\beta Q_k})^2\} \tag{B-3}
\]

Combining Eqs. (B-1), (B-3), and (B-2) yields

\[
\sigma^2_{m_p} = \frac{1}{N} \left(\frac{1}{4} m^2 \frac{\sin^2(\omega_n T_{sy}/4)}{\sin^2(\omega_n T_s/2)} \sigma_n^2 + \frac{\sigma_n^4}{2} \right) \tag{B-4}
\]

\[
U_k = \Re\{Y_{\alpha_k} Y^*_{\beta_k}\} = \Re\{(s_{\alpha_k} + n_{\alpha_k})(s_{\beta_k} + n_{\beta_k})\}
\]

and \(s_{\alpha_k} \) and \(s_{\beta_k} \) denote the signal part of \(Y_{\alpha_k} \) and \(Y_{\beta_k} \), respectively, as in Eqs. (A-5) and (A-6). The last step in Eq. (B-1) follows from the independence of the noises with zero mean in the two halves of each symbol. Note that \(T_{sy} = N_s T_s \).
Appendix C

Evaluation of the Mean and Variance of m_{ss}

The mean of m_{ss} is

$$E\{m_{ss}\} = E \left\{ \frac{1}{N} \sum_{k=1}^{N} |Y_k|^2 \right\}$$

$$= m^2 C_2^2 + \frac{1}{N} \sum_{k=1}^{N} E\{|n_k|^2\} + \frac{1}{N} \sum_{k=1}^{N} E\{\Re\{n_k s_k^*\}\}$$

$$= m^2 C_2^2 + 2\sigma_n^2$$ \hspace{1cm} (C-1)

To find the variance of m_{ss}, let

$$V_k = |Y_k|^2$$

$$= Y_{f_k}^2 + Y_{Q_k}^2$$

$$= (s_{f_k} + n_{f_k})^2 + (s_{Q_k} + n_{Q_k})^2$$ \hspace{1cm} (C-2)

where $Y_{f_k}, Y_{Q_k}, s_{f_k}, s_{Q_k}, n_{f_k}$, and n_{Q_k} are defined in Appendix A. Because the $\{V_k\}$ are independent, the variance of m_{ss} can be expressed in terms of the variance of V_k [4, p. 352],

$$\sigma_{m_{ss}}^2 = \frac{1}{N^2} \sum_{k=1}^{N} \sigma_{V_k}^2$$ \hspace{1cm} (C-3)

$$\sigma_{V_k}^2 = E\{V_k^2\} - (E\{V_k\})^2$$ \hspace{1cm} (C-4)

where

$$E^2\{V\} = E^2\{m_{ss}\}$$

$$= (m^2 C_2^2 + 2\sigma_n^2)^2$$ \hspace{1cm} (C-5)

Expanding V_k^2, take the expectation of V_k^2, apply $E\{n_{f_k}^2\} = E\{n_{Q_k}^2\} = \sigma_n^2$, $E\{n_{f_k}^2\} = E\{n_{Q_k}^2\} = 0$, and $E\{n_{f_k}^4\} = E\{n_{Q_k}^4\} = 3\sigma_n^4$ [3, p. 147]; and use the independence of n_{f_k} and n_{Q_k}, and one will obtain

$$E\{V_k^2\} = 8\sigma_n^4 + 8\sigma_n^2 (s_{f_k}^2 + s_{Q_k}^2) + (s_{f_k}^2 + s_{Q_k}^2)^2$$

$$\times 8\sigma_n^4 + 8m^2 C_2^2 \sigma_n^2 + m^4 C_2^4$$ \hspace{1cm} (C-6)

The variance of V_k becomes

$$\sigma_{V_k}^2 = 4m^2 C_2^2 \sigma_n^2 + 4\sigma_n^4$$ \hspace{1cm} (C-7)

Finally, the variance of m_{ss} can be written as

$$\sigma_{m_{ss}}^2 = \frac{1}{N} [4m^2 C_2^2 \sigma_n^2 + 4\sigma_n^4]$$ \hspace{1cm} (C-8)
Appendix D

Evaluation of the Covariance of m_p and m_{ss}

The covariance of m_p and m_{ss} is defined as

$$\text{cov} (m_p, m_{ss}) = E\{(m_p - \bar{m}_p)(m_{ss} - \bar{m}_{ss})\}$$

$$= E\{m_pm_{ss}\} - \bar{m}_p\bar{m}_{ss}$$

(D-1)

As in Appendices B and C, let

$$U_k = \Re\{Y_{\alpha_k}Y_{\beta_k}^*\}$$

$$= Y_{\alpha_k}Y_{\beta_k} + Y_{\alpha_k}^*Y_{\beta_k}$$

$$= (s_{\alpha_k} + n_{\alpha_k})(s_{\beta_k} + n_{\beta_k})$$

$$+ (s_{\alpha_k}^* + n_{\alpha_k}^*)(s_{\beta_k}^* + n_{\beta_k}^*)$$

(D-2)

and

$$V_k = |Y_k|^2$$

$$= s_{\alpha_k}^2 + 2s_{\alpha_k}n_{\alpha_k} + n_{\alpha_k}^2 + s_{\beta_k}^2 + 2s_{\beta_k}n_{\beta_k} + n_{\beta_k}^2$$

(D-3)

The expectation of the product of U_kV_k can be expressed as

$$E\{U_kV_k\} =$$

$$\sigma_n^4 + 2\sigma_n^2E\{s_{\alpha_k}s_{\beta_k} + s_{\alpha_k}^*s_{\beta_k}^*\} + E\{s_{\alpha_k}^2 + s_{\beta_k}^2\}\sigma_n^2$$

$$+ E\{(s_{\alpha_k}^2 + s_{\beta_k}^2)(s_{\alpha_k}s_{\beta_k} + s_{\alpha_k}^*s_{\beta_k}^*)\}$$

$$= \sigma_n^4 + 2\sigma_n^2\left(\frac{1}{4}m^2C_1^2\cos\frac{z}{2}\right)$$

$$+ \sigma_n^2(m^2C_2^2 + m^2C_2^2\left(\frac{1}{4}m^2C_1^2\cos\frac{z}{2}\right))$$

(D-4)

where

$$C_1 = \frac{\text{sinc} (\omega_o T_{sy}/4)}{\text{sinc} (\omega_o T_s/2)}$$

$$C_2 = \frac{\text{sinc} (\omega_o T_{sy}/2)}{\text{sinc} (\omega_o T_s/2)}$$

and

$$z = \omega_o T_{sy}$$

Note that

$$C_2 = \frac{1}{2}C_1^2 \left[1 + \cos\left(\frac{\omega_o T_{sy}}{2}\right)\right]$$

Then

$$E\{m_pm_{ss}\} =$$

$$E\left\{\frac{1}{N}\sum_{k=1}^{N} U_k \frac{1}{N}\sum_{l=1}^{N} V_l\right\}$$

$$= \frac{1}{N^2} \left[\sum_{k=1}^{N} E\{U_kV_k\} + \sum_{k=1}^{N} E\{U_k\} \sum_{l=1,l\neq k}^{N} E\{V_l\}\right]$$

(D-5)

Finally, the covariance of m_p and m_{ss} is

$$\text{cov} (m_p, m_{ss}) = \frac{1}{N}[E\{U_kV_k\} - \bar{m}_p\bar{m}_{ss}]$$

$$= \frac{1}{N} \left[m^2C_2^2\sigma_n^2 + \sigma_n^4\right]$$

(D-6)

243
Appendix E
Evaluation of the Partial Derivatives

Denote the following parameters in a convenient form,

\[K_1 = \frac{4 \text{sinc}^2 (\omega_0 T_{xy}/2)}{\text{sinc}^2 (\omega_0 T_{xy}/4) \cos (\omega_0 T_{xy}/2)} \]

\[K_2 = \frac{2}{\cos (\omega_0 T_{xy}/2)} + 2 \]

and

\[C_1 = \frac{\text{sinc} (\omega_0 T_{xy}/4)}{\text{sinc} (\omega_0 T_{xy}/2)} \]

\[z = \omega_0 T_{xy} \]

In terms of \(K_1 \) and \(K_2 \), the estimate \(\text{SNR}^* \) defined in Eq. (12) is given by

\[\text{SNR}^* = g(m_p, m_{ss}) \]

\[= \frac{K_1 m_p}{m_{ss} - K_2 m_p} \] \hspace{1cm} (E-1)

Then \(g(\bar{m}_p, \bar{m}_{ss}) = \text{SNR} \), and the partial derivatives of this estimator function are

\[\frac{\partial g}{\partial m_p} \bigg|_{\bar{m}_p, \bar{m}_{ss}} = \frac{K_1 K_2 \bar{m}_p}{(\bar{m}_{ss} - K_2 \bar{m}_p)^2} + \frac{K_1}{\bar{m}_{ss} - K_2 \bar{m}_p} = \]

\[= \frac{1}{\sigma_n^2 \cos (z/2)} \left[\text{SNR} \left(1 + \cos \frac{z}{2}\right) + \frac{2}{C_1^2} \right] \] \hspace{1cm} (E-2)

\[\frac{\partial^2 g}{\partial m_p^2} \bigg|_{\bar{m}_p, \bar{m}_{ss}} = \frac{2K_1 K_2 m_p}{(m_{ss} - K_2 m_p)^3} + \frac{2K_1 K_2}{(m_{ss} - K_2 m_p)^2} \]

\[= \frac{2 \cos^2(z/4)}{\sigma_n^4 \cos^2(z/2)} \left[2 \text{SNR} \left(1 + \cos \frac{z}{2}\right) + \frac{4}{C_1^2} \right] \] \hspace{1cm} (E-3)

\[\frac{\partial g}{\partial m_{ss}} \bigg|_{\bar{m}_p, \bar{m}_{ss}} = -\frac{K_1 \bar{m}_p}{(m_{ss} - K_2 \bar{m}_p)^2} \]

\[= -\frac{1}{2 \sigma_n^2} \text{SNR} \] \hspace{1cm} (E-4)

\[\frac{\partial^2 g}{\partial m_{ss}^2} \bigg|_{\bar{m}_p, \bar{m}_{ss}} = \frac{2K_1 m_p}{(m_{ss} - K_2 m_p)^3} \]

\[= \frac{1}{2 \sigma_n^4} \text{SNR} \] \hspace{1cm} (E-5)

where the second lines of Eqs. (E-2) through (E-6) are obtained by substituting the expressions for \(\bar{m}_p = E\{m_p\} \) and \(\bar{m}_{ss} = E\{m_{ss}\} \) from Appendices B and C.
References

