Author Index, 1993

The Telecommunications and Data Acquisition Progress Report

42-113, January–March, May 15, 1993
42-114, April–June, August 15, 1993
42-115, July–September, November 15, 1993
42-116, October–December, February 15, 1994

Abbate, S. F.

42-114 Stability Measurements of the Radio Science System at the 34-m High-Efficiency Antennas, pp. 112–139.

See Pham, T. T.

Abusali, P. A. M.

See Vigue, Y.

Alvarez, L. S.

See Yin, B.

Andrews, M. M.

See Beyer, P. E.

Asmar, S. W.

See Morabito, D. D.

See Morabito, D. D.

Bartos, R. D.

42-113 An Analysis of the 70-Meter Antenna Hydrostatic Bearing by Means of Computer Simulation, pp. 147–173.

Bautista, J. J.

42-114 Insertion Loss and Noise-Temperature Contribution of High-Temperature Superconducting Bandpass Filters Centered at 2.3 and 8.45 GHz, pp. 61–67.

See Prater, J. L.

Belongie, M.

See Dolinar, S.

1 In the case of joint authorship, the reader is referred to the citation under the first author, where all the authors of the article are listed.
See Statman, J. I.

Bester, M.

42-116 Toward Astrometric Tracking With the Infrared Spatial Interferometer, pp. 1–9.
See Treuhaft, R. N.

Beyer, P. E.

M. M. Andrews

Bishop, D. F.

Biswas, A.

42-114 Calibration of the Receiver Channel for the GOPEX Precursor Experiments, pp. 205–212.

Blewitt, G.

See Vigue, Y.

Border, J. S.

42-113 Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry—Part II: Orbit Determination Analysis, pp. 22–36.
See Folkner, W. M.

Bowen, J.

42-114 A Cryogenic Seven-Element HEMT Front End for DSS 13, pp. 51–60.
D. Neff

Breidenthal, J. C.

42-114 Stability Measurements of the Radio Science System at the 34-m High-Efficiency Antennas, pp. 112–139.
See Pham, T. T.

Burkhart, P. D.

See Estefan, J. A.

Cha, A.

42-114 An Initial Study of Using the 34-m Antenna for Lunar Mission Support, pp. 311–315.
P. Cramer

Chauvin, T. H.

See Statman, J. I.

Chen, J. C.

42-115 Performance of the X-/Ka-/KABLE-Band Dichroic Plate in the DSS-13 Beam Waveguide Antenna, pp. 54–64.
P. H. Stanton and H. F. Reilly

Cheung, K.-M.

See Ekroot, L.

See Statman, J. I.

Chow, E. T.

42-114 Asynchronous Transfer Mode Link Performance Over Ground Networks, pp. 185–191.
R. W. Markley

Collins, O.

42-114 Exploiting the Cannibalistic Traits of Reed–Solomon Codes, pp. 84–89.

Cooper, L. P.

See Lee, L. F.
Cormier, R.
42-113 High-Power Ka-Band Amplifier, pp. 37–45.

Cowles, K.
42-114 Hardware Design for the Autonomous Visibility Monitoring (AVM) Observatory, pp. 295–301.

Cramer, P.
42-114 An Initial Study of Using the 34-m Antenna for Lunar Mission Support, pp. 311–315.
See Cha, A.

Danchi, W. C.
42-116 Toward Astrometric Tracking With the Infrared Spatial Interferometer, pp. 1–9.
See Treuhaft, R. N.

Divsalar, D.
42-114 Coding Performance of the Probe–Orbiter–Earth Communication Link, pp. 68–83.
S. Dolinar and F. Pollara

Dolinar, S.
See Ekroot, L.
42-114 Coding Performance of the Probe–Orbiter–Earth Communication Link, pp. 68–83.
See Divsalar, D.
M. Belongie
See Ekroot, L.

Dren, T.
See Guinn, J.

Dunn, C. E.
See Lichten, S. M.

Edwards, C. D.
See Lichten, S. M.

Ekroot, L.
R. J. McEliece, S. Dolinar, and L. Swanson
S. Dolinar and K.-M. Cheung

Eldred, D. B.
42-116 An Improved Conscan Algorithm Based on a Kalman Filter, pp. 223–231.

Epp, L. W.
42-113 Experimental and Modal Verification of an Integral Equation Solution for a Thin-Walled Dichroic Plate With Cross-Shaped Holes, pp. 46–62.
P. H. Stanton

Estefan, J. A.
P. D. Burkhart

Feria, Y.
J. Statman
Flanagan, M. J.

42-115 Spur-Reduced Digital Sinusoid Synthesis, pp. 91–104.

G. A. Zimmerman

Folkner, W. M.

42-113 Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry—Part II: Orbit Determination Analysis, pp. 22–36.

J. S. Border, S. Nandi, and K. S. Zukor

Franco, M.

See Imbriale, W.

Fugate, R. Q.

42-114 GOPEX at the Starfire Optical Range, pp. 255–279.

Gawronski, W. K.

J. A. Mellstrom

See Racho, C. S.

Glass, G. W.

G. G. Ortiz and D. L. Johnson

Goddard, R. E.

Guinn, J.

J. Jee, P. Wolff, F. Lagattuta, T. Drain, and V. Sierra

Gutierrez-Luaces, B. O.

42-114 Performance Results of a Digital Test Signal Generator, pp. 140–153.

M. Marina and B. Parham

Haines, B. J.

See Lichten, S. M.

42-115 A Review of GPS-Based Tracking Techniques for TDRS Orbit Determination, pp. 1–16.

S. M. Lichten, R. P. Malla, and S.-C. Wu

Heflin, M. B.

See Vigue, Y.

Hinedi, S.

See Million, S.

42-116 Effects of Low Sampling Rate in the Digital Data-Transition Tracking Loop, pp. 204–222.

See Mileant, A.

Hops, J. M.

42-114 Formal Functional Test Designs With a Test Representation Language, pp. 154–169

Huang, J.

Imbriale, W.

W. Veruttipong, T. Otoshi, and M. Franco
Lee, J.

See Guinn, J.

Jin, Y.

42-115 Box Codes of Lengths 48 and 72, pp. 105–109.

See Solomon, G.

Johnson, D. L.

See Glass, G. W.

Kayalar, S.

Krisher, T. P.

See Morabito, D. D.

See Morabito, D. D.

Lagattuta, F.

See Guinn, J.

Lee, L. F.

L. P. Cooper

Lee, P. R.

See Stanton, P. H.

Lesh, J. R.

42-114 An Overview of the Galileo Optical Experiment (GOPEX), pp. 192–204.

See Wilson, K. E.

Levine, B. M.

K. S. Shaik and T.-Y. Yan

Levy, R.

42-113 DSS-14 Subreflector Actuator Dynamics During the Landers Earthquake, pp. 130–146.

D. Strain

42-113 A Note on the Computation of Antenna-Blocking Shadows, pp. 74–79.

D. Strain

Lichten, S. M.

See Vigue, Y.

42-114 Use of Global Positioning System Measurements to Determine Geocentric Coordinates and Variations in Earth Orientation, pp. 21–33.

See Malla, R. P.

L. E. Young, S. Nandi, B. J. Haines, C. E. Dunn, and C.D. Edwards

275
A Review of GPS-Based Tracking Techniques for TDRS Orbit Determination, pp. 1–16.

See Haines, B. J.

Linfield, R. P.

J. Z. Wilcox

Logan, Jr., R. T.

Layout and Cabling Considerations for a Large Communications Antenna Array, pp. 302–310.

Loyola, S. J.

Mall, R. P.

Use of Global Positioning System Measurements to Determine Geocentric Coordinates and Variations in Earth Orientation, pp. 21–33.

S.-C. Wu and S. M. Lichten

A Review of GPS-Based Tracking Techniques for TDRS Orbit Determination, pp. 1–16.

See Haines, B. J.

Marina, M.

Performance Results of a Digital Test Signal Generator, pp. 140–153.

See Gutierrez–Luaces, B. O.

Markley, R. W.

Asynchronous Transfer Mode Link Performance Over Ground Networks, pp. 185–191.

See Chow, E. T.

Masters, K.

See Okamoto, G.

Masters, W. C.

D. J. Scheeres and S. W. Thurman

McEliece, R. J.

The General Theory of Convolutional Codes, pp. 89–98.

R. P. Stanley

See Ekroot, L.

T. H. Palmatier

Mellstrom, J. A.

See Gawronski, W. K.

Mileant, A.

Effects of Low Sampling Rate in the Digital Data-Transition Tracking Loop, pp. 204–222.

S. Million and S. Hinedi

Miller, J. K.

The Effect of Clock, Media, and Station Location Errors on Doppler Measurement Accuracy, pp. 7–21.

Million, S.

B. Shah and S. Hinedi

Effects of Low Sampling Rate in the Digital Data-Transition Tracking Loop, pp. 204–222.

See Mileant, A.
Morabito, D. D.

T. P. Krisher and S. W. Asmar

T. P. Krisher and S. W. Asmar

Muellerschoen, R. J.

See Vigue, Y.

Nandi, S.

42-113 Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry—Part II: Orbit Determination Analysis, pp. 22–36.
See Folkner, W. M.

See Lichten, S. M.

Neff, D.

42-114 A Cryogenic Seven-Element HEMT Front End for DSS 13, pp. 51–60.
See Bowen, J.

Nguyen, T. M.

H.-G. Yeh

See H.-G. Yeh

Okamoto, G.

K. Masters

Ortiz, G. G.

See Glass, G. W.

Otoshi, T. Y.

42-113 Maximum and Minimum Return Losses From a Passive Two-Port Network Terminated With a Mismatched Load, pp. 80–88

See Imbriale, W.

Owen, Jr., W. M.

Palmatier, T. H.

See McEliece, R. J.

Parham, B.

42-114 Performance Results of a Digital Test Signal Generator, pp. 140–153.
See Gutierrez–Luaces, B. O.

Peng, T. K.

42-114 Stability Measurements of the Radio Science System at the 34-m High-Efficiency Antennas, pp. 112–139.
See Pham, T. T.

Pham, T. T.

42-114 Stability Measurements of the Radio Science System at the 34-m High-Efficiency Antennas, pp. 112–139.
J. C. Breidenthal, T. K. Peng, S. F. Abbate, and S. T. Rockwell

Pollara, F.

42-114 Coding Performance of the Probe–Orbiter–Earth Communication Link, pp. 68–83.
See Divsalar, D.
Prater, J. L.

42-114 Insertion Loss and Noise-Temperature Contribution of High-Temperature Superconducting Bandpass Filters Centered at 2.3 and 8.45 GHz, pp. 61–67.
J. J. Bautista

Prestage, J. D.

42-113 Improved Linear Ion Trap Physics Package, pp. 1–6.

Quinn, R. B.

42-116 A Dual-Cavity Ruby Maser for the Ka-Band Link Experiment, pp. 53–70.
See Shell, J.

Rabkin, J.

See Statman, J. I.

Racho, C. S.

W. K. Gawronski

Reilly, H. F.

See Stanton, P. H.

42-115 Performance of the X-/Ka-/KABLE-Band Dichroic Plate in the DSS-13 Beam Waveguide Antenna, pp. 54–64.
See Chen, J. C.

Rockwell, S. T.

42-114 Stability Measurements of the Radio Science System at the 34-m High-Efficiency Antennas, pp. 112–139.
See Pham, T. T.

Rodemich, E. R.

42-116 A Digital Combining-Weight Estimation Algorithm for Broadband Sources With the Array Feed Compensation System, pp. 86–97.
See Vilnrotter, V. A.

V. A. Vilnrotter

Scheeres, D. J.

42-114 Failure Modes of Reduced-Order Orbit Determination Filters and Their Remedies, pp. 34–42.

See Masters, W. C.

Schutz, R. E.

See Vigue, Y.

Shah, B.

See Million, S.

Shaik, K. S.

See Levine, B. M.

D. Wonica and M. Wilhelm

Shao, M.

42-114 Galileo Optical Experiment (GOPEX) Optical Train: Design and Validation at the Table Mountain Facility, pp. 236–247.
See Yu, J.
Shay, T. M.
See Yin, B.

Shell, J.
42-116 A Dual-Cavity Ruby Maser for the Ka-Band Link Experiment, pp. 53–70.
R. B. Quinn

Sierra, V.
See Guinn, J.

Solomon, G.
42-115 Box Codes of Lengths 48 and 72, pp. 105–109.
Y. Jin

Stanley, R. P.
See McEliece, R. J.

Stanton, P. H.
42-113 Experimental and Modal Verification of an Integral Equation Solution for a Thin-Walled Dichroic Plate With Cross-Shaped Holes, pp. 46–62.
See Epp, L. W.
P. R. Lee and H. F. Reilly
42-115 Performance of the X-/Ka-/KABLE-Band Dichroic Plate in the DSS-13 Beam Waveguide Antenna, pp. 54–64.
See Chen, J. C.

Statman, J. I.
See Feria, Y.
K.-M. Cheung, T. H. Chauvin, J. Rabkin, and M. L. Belongie
42-116 Optimizing the Galileo Space Communication Link, pp. 114–120.

Strain, D.
42-113 DSS-14 Subreflector Actuator Dynamics During the Landers Earthquake, pp. 130–146.
See Levy, R.
See Levy, R.

Swanson, L.
See Ekroot, L.

Thurman, S. W.
See Masters, W. C.

Townes, C. H.
42-116 Toward Astrometric Tracking With the Infrared Spatial Interferometer, pp. 1–9.
See Treuhaft, R. N.

Traxler, M. R.
Treuhaft, R. N.

42-116 Toward Astrometric Tracking With the Infrared Spatial Interferometer, pp. 1–9.

M. Bester, W. C. Danchi, and C. H. Townes

Veruttipong, W.

See Imbriale, W.

Vigue, Y.

S. M. Lichten, R. J. Muellerschoen, G. Blewitt, and M. B. Hefflin

R. E. Schutz and P. A. M. Abusali

Vilnrotter, V. A.

42-116 A Digital Combining-Weight Estimation Algorithm for Broadband Sources With the Array Feed Compensation System, pp. 86–97.

E. R. Rodemich

See Rodemich, E. R.

Wilson, K. E.

42-114 An Overview of the Galileo Optical Experiment (GOPEX), pp. 192–204.

J. R. Lesh

Wolff, P.

See Guinn, J.

Wonica, D.

See Shaik, K.

Wu, S.-C.

42-114 Use of Global Positioning System Measurements to Determine Geocentric Coordinates and Variations in Earth Orientation, pp. 21–33.

See Malla, R. P.

42-115 A Review of GPS-Based Tracking Techniques for TDRS Orbit Determination, pp. 1–16.

See Haines, B. J.

Yan, T.-Y.

See Levine, B. M.

Yeh, H.-G.

See Nguyen, T. M.

T. M. Nguyen

Yin, B.

See Shaik, K.

L. S. Alvarez and T. M. Shay
Young, L. E.

See Lichten, S. M.

Yu, J.

42-114 Galileo Optical Experiment (GOPEX) Optical Train: Design and Validation at the Table Mountain Facility, pp. 236–247.

M. Shao

Zimmerman, G. A.

42-115 Spur-Reduced Digital Sinusoid Synthesis, pp. 91–104.

See Flanagan, M. J.

Zukor, K. S.

42-113 Precise Tracking of the Magellan and Pioneer Venus Orbiters by Same-Beam Interferometry—Part II: Orbit Determination Analysis, pp. 22–36.

See Folkner, W. M.