IPN Progress Report 42-153 May 15, 2003

The Guruswami—-Sudan Decoding Algorithm
for Reed—Solomon Codes

R. J. McEliece!

This article is a tutorial discussion of the Guruswami-Sudan (GS) Reed—Solomon
decoding algorithm, including self-contained treatments of the Kotter and Roth—
Ruckenstein (RR) improvements. It also contains a number of new results, including
a rigorous discussion of the average size of the decoder’s list, an improvement in
the RR algorithm’s stopping rule, a simplified treatment of the combinatorics of
weighted monomial orders, and a proof of the monotonicity of the GS decoding
radius as a function of the interpolation multiplicity.

l. Introduction

In 1997 Madhu Sudan [23], building on previous work of Welch-Berlekamp [24], Ar et al. [1], and
others, discovered a polynomial-time algorithm for decoding certain low-rate Reed—Solomon (RS) codes
beyond the classical d/2 error-correcting bound. Two years later, Guruswami and Sudan [9] published a
significantly improved version of Sudan’s algorithm, which was capable of decoding virtually every RS code
at least somewhat, and often significantly, beyond the d/2 limit. The main focus of these seminal articles
was on establishing the existence of polynomial-time decoding algorithms, and not on devising practical
implementations. However, several later authors, notably Kétter [12,13] and Roth-Ruckenstein (RR) [21],
were able to find low-complexity (no worse than O(n?)) realizations for the key steps in the Guruswami-
Sudan (GS) algorithm, thus making GS a genuinely practical engineering alternative in storage and
transmission systems requiring RS codes.

This article is a tutorial discussion of the GS algorithm, including the Koétter and Roth—Ruckenstein
improvements. It also contains a number of new results, including a rigorous discussion of the average
size of the decoder’s list, an improvement in the RR algorithm’s stopping rule, a simplified treatment
of the combinatorics of weighted monomial orders, and a proof of the monotonicity of the GS decoding
radius as a function of the interpolation multiplicity.

Here is an outline of the article. In Section II, we give an overview of the GS algorithm and several
numerical examples. In Sections III and IV, we present a self-contained introduction to the algebraic
fundamentals of two-variable polynomials, which are a key component of the GS algorithm. In Section V,
we state and prove the two basic theorems that support the GS algorithm: the Interpolation Theorem and
the Factorization Theorem. With this preliminary material out of the way, in Section VI we give a formal

! California Institute of Technology, Pasadena, California, and Communications Systems and Research Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.

description, and proof of correctness, of the Guruswami—Sudan algorithm. In Sections VII through IX,
we describe the Kotter and Roth—Ruckenstein improvements.

Finally, in Appendices A through D, we present some miscellaneous material related to the GS al-
gorithm: In Appendix B, for example, we explain how to modify the GS algorithm when erasures are
present. In Appendix C, we present a GS-type decoding algorithm that is “conventional” in the sense
that it can correct only up to d/2 errors, and in Appendix D we give a rigorous treatment of the average
number of codewords in the GS output list.

The following notation will be used:

e N: the nonnegative integers, i.e., N={0,1,2,-}.

|X|: the number of elements in the finite set X.

e F': a field, usually finite.

e F[z]: the ring of polynomials in z, with coeflicients from F'.
e deg f(z): the degree of the polynomial f(x) € F[z].

e F,[x]: the polynomials of degree <v from F[z].

o F[x,y]: the ring of polynomials in z and y, with coefficients from F. A typical element of
Flz,yl:

Qz,y) = Z ai,jxiyj

(i,5)€I

where I = I(Q) is a finite set of indices.
e M[z,y] = {x'y’ :i >0, j > 0}: the set of bivariate (z and y) monomials.

e deg, , Q(z,y): the (u,v)-weighted degree of the polynomial Q(x,y), defined as

deg, , Q(z,y) = max {ui + vj}
’ (i,9)el

e The y-degree of Q(z,y) € F[z,y):

degy Q(Ivy) é degO,l Q(:C,y) =

Y
[nax I{J}

e Fp[z,y]: the polynomials from Fx,y] whose y-degree is <L

Il. A First Look at the Guruswami-Sudan Algorithm
In this section, we give an overview of the GS algorithm, including a motivating example, an informal

description of the algorithm, and several numerical examples.

Let us recall the definition of an (n, k) Reed—Solomon code over F' = GF(q), as given by Reed and
Solomon in the original article [20].

Let (ai,---,a,) be a fixed list of n distinct elements of F, called the support set of the code. The

encoding process is that of mapping a vector (fo, f1,- -, fx—1) of k information symbols into an n-symbol
codeword (z1,---,2,) by polynomial evaluation, i.e.,

(1, 2n) = (flar), -, flan)) (1)
where

f@)=fo+ fix+ -+ fora®! (2)

The corresponding Reed—Solomon code consists of all n-vectors of the form in Eq. (1), where f(z) is a
polynomial of degree <k.

It is well-known that this code has minimum Hamming distance d = n—k+1 and, therefore, is capable
of correcting up to
n—=k
to = { 5 J (3)

errors. Conceptually, this may be accomplished as follows. The decoder searches the Hamming sphere
of radius tg centered at the received word for codewords. If the sphere contains a unique codeword,
that is the decoder’s output. Otherwise, the decoder reports failure. (This strategy is called bounded
distance decoding (BDD) and dates back to Shannon’s proof of the noisy-channel coding theorem [22,
Section 13]. The conventional RS decoding algorithms, e.g., Berlekamp [2], Berlekamp—Massey [4,15],
continued fractions [18,25], or Euclidean algorithm [16], are all BDD algorithms.) The decoding sphere
cannot contain more than one codeword, since the minimum distance of the code is >2ty. If we attempt
to correct more than ty errors by increasing the decoding radius, it is possible for the decoding sphere
to contain more than one codeword, in which case the decoder will fail. For this reason, conventional
wisdom asserts that the code is not capable of correcting more than tq errors. Nevertheless, if we examine
the probability that the decoding sphere will contain multiple codewords, rather than the possibility, we
may reach a different conclusion.

Example 1. Consider the (32,8) RS code over GF(32), with d = 25 and tg = 12. If the decoding
radius is taken to be t = 13, and the transmitted codeword suffers 13 errors, it is possible for the decoding
sphere to contain two codewords: the transmitted codeword (which we will call the causal codeword) and
one other, a noncausal codeword at distance 12 or 13 from the received word. However, assuming all error
patterns of weight 13 are equally likely, it can be shown (using methods we will describe in Appendix D)
that the probability of this unfavorable happening is 2.08437 x 10~'2! In short, the code is capable of
correcting virtually all patterns of 13 errors, despite having a conventional error-correcting capability of
only 12.

Example 1 suggests that it might be possible to design a decoding algorithm for RS codes capable of
correcting more than ¢y errors. The Guruswami-Sudan list decoding algorithm [23,9] does just this. It is
a polynomial-time? algorithm for correcting (in a certain sense) up to tgs errors, where tgg is the largest

integer strictly less than n — /(k — 1)n, i.e.,

th:n—l—L (k;—l)nJ (4)

2 Conservatively, the time complexity is O(n2m4), where n is the code length and m is the interpolation multiplicity.

It is easy to show that tgg > tg, and often tggs is considerably greater than ty (see the examples below).
Asymptotically, for RS codes of rate R, the conventional decoding algorithms will correct a fraction
70 = (1 — R)/2 of errors, while the GS algorithm can correct up to 7qs = 1 — vR.?

The GS decoder has an adjustable integer parameter m > 1 called the interpolation multiplicity.
Associated with the interpolation multiplicity m is positive integer t = t,,, called the designed decoding
radius. Given a received word, the GS(m) decoder returns a list that includes all codewords with
Hamming distance t,, or less from the received word, and perhaps a few others. The exact formula
for t,, is a bit complicated, but for now it suffices to say that*

lo<t1 <ty <---
and there exists an integer mg such that

tmo :tm0+1 = :tGS

Here is an overview of the GS(m) algorithm (a detailed description will be given in Section VT).
Suppose C' = (f(a1),- -, f(ay)) is the transmitted codeword, where f(x) is a polynomial of degree <k,
and that C' is received as R = (01,---,0,). Let p(z) be any polynomial of degree <k that maps to an
RS codeword with Hamming distance <t,, from R, i.e.,

The GS(m) decoder “finds” p(x) as follows.

(1) The interpolation step. Given the received vector R = (01, -, 3,), the decoder constructs
a two-variable polynomial

Qz,y) = Z ai,jxiyj
)

with the property that @ has a zero of multiplicity m (exact definition in Section IV) at
each of the points («;, 3;), and for which the (1,k — 1) weighted degree (exact definition in
Section III) of Q(x,y) is as small as possible.

(2) The factorization step. The decoder then finds all factors of Q(z,y) of the form y — p(x),
where p(z) is a polynomial of degree k — 1 or less. Let

L= {pl(x),~-~,pL(1:)}

be the list of polynomials produced by this step. The polynomials (codewords) p(x) € L are
of three possible types:

3 By the arithmetic-geometric mean inequality, 1 — v R > (1 — R)/2, with equality iff R = 1.
4We note in passing that the GS(1) decoder is the original Sudan algorithm [23].

(a) Type 1. The transmitted, or causal, codeword.

(b) Type 2. Codewords with Hamming distance <t,, from R, which we call plausible code-
words.

(c¢) Type 3. Codewords with distance >t,, from R, which we call implausible codewords.
In Section VI, we will give a proof of the following theorem.

Theorem 1. If the GS(m) decoding algorithm is used, all plausible codewords will be in L. In
particular, the transmitted codeword will be in L if the number of channel errors is < t,,. The list may
also contain implausible codewords, but the total number of codewords in the list, plausible and implausible,
will satisfy L < L,,, where the exact determination of Ly, is given in Section VI, Eq. (45), but which is
conservatively estimated by

Example 2. Consider again the (32,8) RS code over GF'(32), with r = 24 and d = 25. Its conventional
error-correcting capability is ¢ty = 12 errors, but by Eq. (4), the GS algorithm can correct up to tgg = 17
errors! The value of the designed decoding radius ¢, as a function of the interpolation multiplicity m is
given in the table below, together with the exact value of L,, as given in Eq. (45), and the value

w0 =0y ()1

s=0

which is the average number of codewords in a randomly chosen sphere of radius ¢, and which gives a
heuristic upper bound on the probability that the decoding sphere will contain a noncausal codeword.
Values of m that do not afford a larger value of t,,, than the previous value are omitted. For example, in
the present example, to = t3 = 15, and so m = 3 is omitted from the table. Similarly, t5 =t = --- =
t119 = 16:

m tm Lm L(tm)
0 12 1 1.36305 x 1010
1 14 2 2.74982 x 1097
2 15 4 0.0000102619
4 16 8 0.000339205
mo = 120 17 256 0.00993659

It is interesting to note the growth in the required value of m as ¢ increases from 16 (m = 4) to 17
(m = 120), which indicates that ¢ = 16 is the practical limit for the GS algorithm in this case.

Example 3. Similarly, for the (16,4) RS code over GF(16) (to = 6 and tgs = 9):

m tm L L(tm)
0 6 1 0.000336183
1 7 0.00728043
2 8 0.124465
mo = 28 9 64 1.68692

Here we see that for t = tgg = 9, the interpolation multiplicity may be prohibitively large, so that ¢ = 8
is the practical limit.

Example 4. For the (31,15) RS code over GF(32), ty = 8 and tgg = 10:

m tm Lm L(tm)
5.62584 x 1096

4 0.000446534
mo = 21 10 31 0.0305164

Example 5 [21, Example 7.1]. For the (18,2) RS code over GF(19), to = 8 and tgs = 13:

m tm Lm E(tm)
0 8 1 1.74158 x 1096
1 12 4 0.0821209
mo =2 13 9 0.700656

Note the large values of L(t), which may obviate the claim, e.g., that the code can correct almost all
patterns of 13 errors.

Example 6. For the (6,4) RS code over GF(7), tg =tgs = 1:

m tm Lm Z(tm)

mo =0 1 1 0.7551

This is a rare example where the GS algorithm provides no improvement over conventional decoding.

Example 7. For the (255,223) RS code over GF(256), tg = 16 and tgs = 1T7:

m tm Lm L(tm)
0 16 1 2.609 x 10~ 14
mo = 112 17 120 9.35 x 10~11

Not until m = 112 does the GS algorithm offer an improvement over conventional decoders, and even
then the improvement is only one extra error corrected. With the decoding complexity O(m?), it seems
pointless to try to correct the extra error.

lll. Polynomials in Two Variables I: Monomial Orders and Generalized Degree

In this section, we present a self-contained introduction to the algebraic fundamentals of two-variable
polynomials. These fundamentals include weighted monomial orderings, generalized degree functions,
and certain related combinatorial results.

If F is a field, we denote by F[z,y] the ring of polynomials in « and y with coeflicients from F. A
polynomial Q(z,y) € F[z,y] is, by definition, a finite sum of monomials, viz.,

Qz,y) = > ai 'y’ (6)

4,520

where only a finite number of the coefficients a;; are nonzero. The summation in Eq. (6) is two-
dimensional, but often it is desirable to have a one-dimensional representation instead. To do this,
we need to have a linear ordering of the set of monomials

Mz, y] = {z'y’ :4,j > 0}

In this section, we will describe a general class of monomial orderings.

We first note that the set M|z, y] is isomorphic to the set N2 of pairs of nonnegative integers under the
bijection z'y’ < (i,7). A monomial ordering [7, Section 2.2] is a relation “<” on M|z, y] (equivalently,
on NQ) with the following three properties:®

If aq S b1 and ag é bz, then (al,ag) S (bl,bg). (7)

The relation “ <7 is a total ordering, i.e., if a and b are distinct monomials,

eithera<bor b < a. (8)

Ifa<bandceN? thena+c<b+ec. (9)

(Because of Property (7), “<” is said to be a linear extension of the partial order on N? induced by the
ordinary meaning of “<.,” applied componentwise.)

5In what follows, the symbol “z < y” will mean “either x < y or z = y.”

There are many possible monomial orderings, but for us the most important ones are the weighted
degree (WD) monomial orders. A WD monomial order is characterized by a pair w = (u, v) of nonnegative
integers, not both zero. For a fixed w, the w-degree of the monomial x'y’ is defined as

degwxiyj = ut + vj

If we order M[x,y] by w-degree, i.e., declare that ¢(z,y) < ¢'(x,y) if deg,, P(x,y) < deg, ¢’ (z,y), we
only get a partial order, since monomials with equal w-degree are incomparable. It turns out that there
are just two ways to break such ties so that Property (9) is satisfied: w-lexicographic (w-lex) order, and
w-reverse lexicographic (w-revlex) order.

Definition 1. w-lex order is defined as follows:
xilyjl < xiQyjé

if either uiy +vj1 < uis + vjo, or wiy + vj; = wis +vjs and i; < io. w-revlex order is similar, except that
the rule for breaking ties is ¢; > is. (In the special case w = (1,1), these orderings are called graded-lex,
or grlex, and reverse graded-lex, or grevlex, respectively.)

Example 8. For any monomial order, we have ry < 2%y because of Property (7). Also, 2y* <gex 2%,
but 2%y <greviex y>. Finally, if w = (1,3), 2° <yreviex 23y <wreviex ¥

Let “<” be a fixed monomial ordering:

1= ¢o(z,y) < ¢1(7,y) < ga(w,y) <---

With respect to this ordering, every nonzero polynomial in F[z,y] can be expressed uniquely in the form

J
Q(z,y) =Y a; d;(z,y) (10)
=0

for suitable coefficients a; € F, with ay # 0. The integer J is called the rank of Q(z,y), and the monomial
¢ is called the leading monomial of Q(z,y). We indicate this notationally by writing Rank(Q) = J and
LM(Q) = ¢s(x,y). The relation LMP = LMQ is an equivalence relation, which we denote by P = Q.
We can extend the order “<” to all of F[z,y] by declaring P < @ to mean LMP < LM@. In this way,
“<,” which is a total order on the set of monomials, becomes a partial order on F'[z,y| and a total order
on the equivalence classes under LM.

In the case of a WD order, the weighted degree of the leading monomial ¢; is also called the weighted
degree, or w-degree, of Q(z,vy), denoted degy Q. Thus,

deg,, Q(v,y) = max{deg ¢(v,y) : a; # 0}

The w-degree function enjoys the following basic properties:

deg,, 0= — o0 (11)

deg,, (PQ) = dog,, P+ deg,,Q (12)
deg,, (P + Q) < max(deg,, P, deg,, Q) (13)
deg,, (P + Q) = max(deg,, P,deg,, @), if LMP #LMQ (14)

If ¢o(z,y) < ¢1(x,y) < --- is a fixed monomial ordering, and ¢ = 2°y? is a particular monomial, the
index of ¢, denoted Ind(¢), is defined as the unique integer K such that ¢x (z,y) = ¢.

Example 9. Here is a listing of the first few monomials, in the “natural” two-dimensional array, but
labeled according to (1, 3)-lex order:

1= 0 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15
i=0/0 1 2 4 6 8 11 14 17 21 25 29 34 39 44 50
113 5 7 10 13 16 20 24 28 33 38 43 49
219 12 15 19 23 27 32 37 42 48
3118 22 26 31 36 41 47
4 \30 35 40 46
Thus, we have ¢g = 1, ¢1 = z, o = 22, b3 = vy, ¢4 = 23, pug = %92, ---. Also, Ind(xy) = 5,

Ind(2?y?) = 15, Ind(2%?) = 48, etc.

Example 10. Here is a listing of the first few monomials, in the “natural” two-dimensional array,
but labeled according to (1,3)-revlex order:

o 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
o 1 2 3 5 7 9 12 15 18 22 26 30 35 40 45
4 6 8 10 13 16 19 23 27 31 36 41 46

11 14 17 20 24 28 32 37 42 47

21 25 29 33 38 43 48

34 39 44

.

Ao~ o |l

Thus, we have ¢0 = 17 ¢1 =T, ¢2 = 3:27 ¢3 = x37 (7754 = ya"'a¢48 = xﬁyga"" AISO, Ind(:cy) = 67
Ind(2?y?) = 17, Ind(2%?) = 47, etc. We shall see below that for (1,v) revlex order, the numbers
Ind(z%) and Ind(y”) are especially important, so we introduce a special notation for them:

A(K,v) = Ind(z) (15)
B(L,v) = Ind(y%) (16)

it being understood that the underlying monomial order is (1, v)-revlex. In terms of the two-dimensional
array given above, the numbers A(K,v) appear in the j = 0 row and the numbers B(L,v) appear in the
1 = 0 column. Thus, with v = 3, we have

x 01 2 3 4 5 6 7
A3) 0 1 2 3 5 7 9 12
B(z,3) 0 4 11 21 34 50 69 90

We note that 2% is the first monomial of (1,v)-degree K, and y’ is the last monomial of (1,v)-degree
vL, so that

A(K,v) = [{(i,7) i+ vj < K} (17)
B(L,v) = [{(i,4) : i +vj < Lv}| — 1 (18)

We conclude this section with a consideration of two-variable polynomials of the form
J
Q(:Ev y) = Z aj¢j (l’, y)
j=0

where ¢g < ¢1 < - - is (1,v)-revlex order, and {ag, as,---,a;} are arbitrary elements of F'. (N.B., We do
not assume that ay # 0.)

Two important questions that will arise are (1) what is the (1, v)-degree of Q(z,y) and (2) what is the
y-degree, i.e., the (0, 1)-degree, of Q(x,y)? From Property (13), we know that

deg; ,Q(z,y) < max{deg; ,¢;(z,y):j=0,---,J}
d6g0,1Q($’y) < max{deg0’1¢j(x,y) :j=0,--,J}
Thus, if we define (it being understood that the monomial order is (1,v)-revlex)
D(u,v;.J) = max{deg, ,65(,y) : j = 0, -, J} (19)
we have the upper bounds
deg; ,Q(z,y) < D(1,v;J)

degg 1Q(=,y) < D(0,1;J)

We need a definition. Let A = {0 =ap < a1 < az < ---} be an increasing sequence of integers, and let
x > 0 be a nonnegative real number. The rank of apparition® of x with respect to A, denoted r4(x), is
the unique index K such that ax <z < ax41. Alternatively,

ra(z) = max{K : ax <z}

= min{L:z <ap41}

6 This amusing term was coined by Basil Gordon of UCLA.

10

Theorem 2. With v fized, define sequences {ax = A(K,v)} and {by, = B(L,v)}. Then

D(1,v;J) =ra(J) (20)

D(0,1;J) = rp(J) (21)

Proof. This is just a matter of observing that z¥ is the first monomial of (1,v) degree K and that
y¥ is the first monomial of (0, 1)-degree L. a

Theorem 2 will be helpful only if we can compute the values A(K,v) and B(L,v).

Theorem 3. For K >0, let r = Kmod v. Then”

A(K, ’U) = % + 5 + 2% (22)
v 2 v
B(L,v) = % + % (23)

Proof. The Equality (23) can be proved by induction, using the recursion

B(L,v) = ({(5,5) i+ vj < (L=} =)+ [{(Z,7) : (L = Do+ 1 <i+wj < Lo}
=B(L-1,v)+vL+1
which follows from Eq. (18). Alternatively, Eq. (23) follows from Eq. (22), using the relationship B(L,v) =

A(vL+1,v)—1 [see Eq. (18)]. The validity of Eq. (22) follows from Eq. (17): for each j such that vj < K,
1 must be in the range 0 < ¢ < K — vj, so that

K
= T—3j here T'= —
UE (j), where »

Now apply Euler’s summation formula [11, Section 1.2.11.2, Eq. (3)], which implies

T —j) = /OT(T—x)dx—f—%—/oT{x—%}dx

_ T T {T)1-{T)

2 2 2 (24)

where {2} = 2 — |z] is the fractional part of z. Equation (24) is equivalent to Eq. (22) since {T'} = r/v.
a

" Formula (22) is similar to, but simpler than, those given in [9, Lemma 6] and [14, Lemma 1].

1

Corollary 1. A(n,v) = vF(n/v), where

F(z) = 5 (o + o+ {z}(1 - {a}))

N =

(Some important properties of the function F'(x) are described in Theorem A-1.)

Corollary 2. Forv > 1, K >0,

K? (K +v/2)?
- < >~ 7
5y < A(K,v) < 5y

Corollary 3. Forv>1, J >0,

(V20T = 2] <ra(h) < [V20T | -1

2

Proof. These inequalities follow by combining Eq. (25) with Eq. (27), to be proved below.

Corollary 4. Forv>1,J >0

2J v+2\° v+ 2
r(J) = 7+<2v> _(21})

and hence

2J v+2 2J
V2222 e | 2]

Proof. These facts follow by combining Eq. (23) with Eq. (26).

Lemma 1. If ag = f(K), where f(z) is a continuous increasing function of > 0, then

(25)

(26)

More generally, if g(K) < ax < f(K), where f(x) and g(z) are both continuous, increasing functions of

z > 0, then

/7 @) <ralz) < g7 (@)

Proof. Suppose K = r4(x). Then by definition,

12

(27)

g(K)<ag <z <agp < f(K+1)
Thus, K < g 1(x) and f~1(z) < K + 1, ie., ra(z) < g 1 (x) and f~H(z) <ra(z)+ 1, ie.,
F U 2) —1<ra(z) < g '(x)

The desired result, Eq. (27), follows immediately, if we recall that r4(z) is an integer. a

IV. Polynomials in Two Variables Il: Zeros and Multiple Zeros

In this section, we continue with our study of bivariate polynomials and focus on the notion of a zero,
or a multiple zero, of such polynomials.

If Q(z,y) € Flz,y], and Q(a, 3) = 0, we say that Q has a zero at (a, 3).8 We shall be interested in
polynomials with multiple zeros.

Definition 2. We say that Q(z,y) = 3, s a;; #'y’ € Flz,y] has a zero of multiplicity, or order m at
(0,0), and write

ord (Q :0,0) =m

if Q(z,y) involves no term of total degree less than m, i.e., a; ; = 0 if i + j < m. Similarly, we say that
Q(z,y) has a zero of order m at (a,) and write

ord(Q:a,8) =m

if Q(x + o,y + 3) has a zero of order m at (0, 0).

Example 11. Let Q(z,y) = 2%y + zy> + 23y. Then Q has a zero of multiplicity 3 (a “triple zero”) at
(0,0). Similarly, P(x,y) = (z — a)?(y — 8) + (z — a)(y — B) + (z — a)?(y — B) has a triple zero at («, 3).
To calculate ord (@ : «, 3), we need to be able to express Q(z + a,y +) as a polynomial in = and y.
The following theorems, due to H. Hasse [10], tell us one way to do this. We begin with the one-variable
version of Hasse’s theorem, both because it serves as a simplified introduction to the two-variable case

and because we will need the one-variable theorem in Section IX (Lemma 7).

Theorem 4. If Q(z) =, a;x’ € F[z], then for any o € F, we have

Qz+a) =Y Q) (28)

where

8 Alternatively, we say that the curve Q(z,y) = 0 passes through the point (a, 3).

13

which is called the rth Hasse derivative of Q(x).° Note also that

Qr(e) = Con Qe +) = 3 1 Joo ™ (30)

%

Note that Eq. (28) is Taylor’s formula (without remainder) when F' has characteristic 0, since in that
case,

Corollary 5. We also have

Q) =Y Q(a)(x—a)’

r>0

Theorem 5. Let Q(z,y) =), ; ai ;x'y’ € Flz,y]. For any («,8) € F?, we have

Q+a,y+8) =) Qrsla, B’y (31)

where

Qrs(w,y) = (;) (‘;) ai o'y (32)

%

which is called the (r,s)th Hasse (mized partial) derivative of Q(x,y).*° Note that Eq. (31) is Taylor’s
formula (without remainder) when F has characteristic 0, since in that case,

8r+s
Qr,s(xay) = @WQ(%ZJ)
Note also the alternative, but equivalent, formula:
Q'r,s(a7 ﬁ) = COGH Q(l’ + a,y + ﬁ) (33)
ary

Proof. Using the binomial theorem, we express Q(z + a,y +) as a polynomial in z and y:

9 We will sometimes use the alternative notation D,Q(x) instead of Q,(x).

10 We will sometimes use the alternative notation D, sQ(z,y) instead of Qr s(x,y).

14

Qz+ay+p)= Z%g‘@ +a)'(y + B’
“se (B0) (S 0)
_ Tz’;xrys (Z (i) (i) ai)ja,;_rﬁj—s>

]

=Y Qrsle,B)a"y®

a
Corollary 6. We also have
Q(z,y) =Y Qrsla, B)(x—) (y —)"
Corollary 7. The polynomial Q(z,y) has a zero of order m at («,) if and only if
Qrs(a,) =0 for all » and s such that 0 <r +s<m (34)

Proof. By definition, ord (@ : o,) > m iff Q(z + «,y +) has a zero of order m at (0,0). But by
Eq. (31), Q(z + o,y + 0) has a zero of order m at (0,0) iff Q. s(e,3) =0forall 0 <r+s<m. a

Corollary 8. If Qv(m,y) = 2Q(z,y), then
@r,s(x7 y) = Qr—l,s(z7 y) + 'TQT,S (SC, y)
Similarly, if @(z,y) = yQ(z,y), then

QVT,S($> y) = Q’r‘,sfl(‘r7 y) + er,s(aj, y)

Proof. By definition, @m(a,ﬂ) = coeffzrys@(x + o,y + (). But from Eq. (31), we have

Qz+a,y+8) = (z+a)Q(r+a,y+ f)

=(@+0a)Y_ Qrsla, 2"y’
= Z Qr,s(aa 5)93”13/8 + Z aQr,s(aa B)xrys

= Z (Qr—l,s(aaﬂ) + aQ7‘,s(a7ﬁ)) xrys

TS

Therefore, @T,S(a,ﬂ) =Qr_1,s(a, B) + aQy s(a, §). a

15

V. The Interpolation and Factorization Theorems

In this section, we will state and prove the two basic theorems that support the GS algorithm. We
call these theorems the Interpolation Theorem and the Factorization Theorem.

A. The Interpolation Theorem

Suppose a nonnegative integer m(«) is assigned to each element « € F', and we are asked to construct
a polynomial f(z) of least degree that has a zero of multiplicity m(«), at = a, for all « € F. Clearly a
minimum-degree solution to this one-dimensional interpolation problems is

f@) =] @

acF

deg f(z) = Y m(a)

acF

We are interested in the analogous two-dimensional interpolation problem: Given a required multiplic-
ity m(a, 3) for each (o, 8) € F?, construct a low-degree polynomial Q(z, %) that has zeros of the required
multiplicity. This is a much harder problem, in general, but the following theorem gives a useful upper
bound on the minimum required degree.

Theorem 6: The Interpolation Theorem. Let {m(«,f) : (o, 3) € F?} be a multiplicity function

as above and let ¢g < ¢1 < --- be an arbitrary monomial order. Then there exists a nonzero polynomial

Q(z,y) of the form

e}
=0

where

which has a zero of multiplicity m(a, 3), at (x,y) = (c, B), for all (o, B) € F2.

Proof. By Corollary 7, Q(z,y) has a zero of multiplicity m at («, 3) if and only if
Qrs(a,8) =0 for all (r,s) such that 0 <7+ s < m(«, 3) (36)

There are (m(a’f)ﬂ) choices for (r, s) in Eq. (36), and by Eq. (32), each such choice imposes one homoge-
neous linear constraint on the coefficients a;. In total there are C' such linear constraints imposed on the

C + 1 coefficients ag, a1, - --,ac. It follows that there must be at least one nonzero solution to this set of
equations, which corresponds to a nonzero polynomial Q(z,y) of the form in Eq. (35) with the required
multiplicities. a

Corollary 9. For any (u,v), there is a nonzero polynomial Q(z,y) with the required zero multiplicities
whose (u, v)-degree is strictly less than v2uvC.

16

Proof. Take {¢;(x,y)} to be (u,v)-revlex order. Then by Eq. (35),
degWJQ(x, y) < max{degu,v(bj (.’E, y) :] = 07) C} = degu,v QSC(‘T, y) = TA(C)

where A = (ag) is the sequence Ind(x¥), for (u,v)-revlex order. But r4(C) < v2uvC by a straightfor-
ward generalization of Corollary 3. a

B. The Factorization Theorem
If Q(z,y) € Flz,y], and f(x) € F[z], define the Q-score of f as

So(f) = Z ord (Q : a,f(a))

acl

Theorem 7: The Factorization Theorem. Suppose f(x) € F,[z], Q(x,y) € Flx,y], and

Sq(f) > deg , Q

Then y — f(x) is a factor of Q(x,y).

Proof. Let Q(z,y) =3, ; a;jz'y’. Then Q(z, f(z)) is a polynomial in z:

Qz, f(2)) = > aija'f(x) (37)

3,j>0
The following three lemmas describe important properties of this polynomial.
Lemma 2. If f(z) € F,[z], then deg Q(z, f(z)) < deg, ,, Q(x,y).

Proof. For a; j # 0, deg(z' f(x)7) < deg(z'2") =i+ vj < max(i +vj : a;; # 0) = deg; , Q(z,y).
a

Lemma 3. Q(w,f(x)) = 0 if and only if (y — f(x)) | Q(z,).

Proof. Let us view Q(z,y) as a polynomial in y over the rational field F(x). Then by the division
algorithm, we can write

Q(z,y) = Qo(z,y)(y — f(2)) + r(w) (38)
where r(z) € F(x). Substituting f(z) for y in Eq. (38), we obtain
Q(z, f(w)) =r(2)

so that Q(:E, f(x)) = 0 if and only if r(z) = 0, which is equivalent to the stated result. a

17

Lemma 4. If ord (Q : o,) = K, and f(«) = 3, then

(-) 1Q(z, f(2))

Proof. Using Corollary 6, express Q(z,y) as a polynomial in z — « and y — (:

Zbu "y — By

Then

) =D bigle = @)’ (f(2) -)’ (39)

since f(a) = 3, f(z) — B is divisible by & — a, so that the term (z —a)*(f(x) —ﬂ)j in Eq. (39) is divisible
by (z —a)™. But ord (Q : o, 3) = K implies that if b; ; # 0, then i + j > K. Thus, every nonzero term
in Eq. (39) is divisible by (z — &)X, i.e., (z — o)X | Q(z, f(=)) a

We can now complete the proof of Theorem 7. By Lemma 4, we know that [] . p(z — a)°rd (@@f(@) |
Q(x,f(a:)). But by Lemma 2, the degree of Q(x,f(:v)) is (at most) deg; , Q(x,y), and the degree of

[Toer(z — a)ord@ef(@) js S (f). Thus, if So(f) exceeds deg; , Q, it follows that Q(z, f(z)) = 0, and
so by Lemma 3, y — f(x) divides Q(z, y). a

VI. A Second Look at the Guruswami-Sudan Algorithm

Armed with the preliminary material from Sections IIT through V, in this section we will give a formal
description, and proof of correctness, of the Guruswami—Sudan algorithm.

A. Prerequisite Notation, Concepts, etc.

Here we list some of the technical details needed for a full discussion of the GS algorithm:

o K(f,5)=Hi: flai) = Bi}l, D(f,8) = [{i: f(ou) # Bi}].
e C(n,m) =n("").
e (1,v)-revlex monomial order.

e The indices A(K,v) = Ind(z¥) and B(L,v) = Ind(y*) (with respect to (1,v)-revlex order),
with the rank of apparition functions

ra(J) = max{K : A(K,v) < J}

rp(J) = max{L : B(L,v) < J}

18

e The numbers K,,, t,,, and L,,:

Kp(n, k) = min{K : A(mK,v) > C(n,m)} =1+ |ra(C)/m] (40)
tm(n, k) =n — Kpp(n,k) =n—1— |ra(C)/m)] (41)
Lm(n, k) = max{L : B(L,v) < C(n,m)} =rp(C) (42)

e Estimates of K, and L,, (from Corollaries 3 and 4):

1 1
{ onE —LJ+1<Km<{ n It J (43)
m 2m m
1 1
n—{ vnm+ J<tm<n—l—{ wnm+ —LJ (44)
m m 2m

L, = \/gm(m+1)+(vg;2>2—v;;2 <<m+%>\/§ (45)

B. The GS Decoding Algorithm, in Detail

Given an (n, k) RS code over the finite field F'; with support set (a1, -, ay,), and a positive integer m,
the GS(m) decoder accepts a vector 3 = (01, --,3,) € F™ as input, and produces a list of polynomials
{f1,--, fr} as output. Here’s how:

1. The GS(m) Decoder. The G\S(m) decoder constructs a nonzero two-variable polynomial of the

form
C(n,m)
Qz,y) = > a;0;(z.y)
j=0
where ¢g < ¢1 < --- is (1, v)-revlex monomial order, such that Q(z,y) has a zero of order m at each of
the n points (ay,3;), for ¢ = 1,---,n. (The Interpolation Theorem, Theorem 6, guarantees that such a

polynomial exists.) The output of the algorithm is the list of y-roots of Q(x,y), i.e.,

L={f(x)€Fla]: (y— f(2))|Qz,y)}

Theorem 8. The output list contains every polynomial of degree <v such that K(f,() > Ky,. Fur-
thermore, the number of polynomials in the list is at most Ly,.

Proof. By Eq. (20), deg;, Q(v,y) < max{deg; ,¢i(v,y) : i = 0,---,C} = ra(C). Hence, by
Theorem 7, any polynomial f(z) of degree <v such that mK(f,5) > ra(C), will be a y-root of Q(x,y).
In other words, if K(f,8) > 1+ |ra(C)/m| = K, f(z) will be on the list.

19

On the other hand, by Eq. (21), the y-degree of Q(z,y) is < rg(C(n,m)) = L,,. Since the number
of y-roots of Q(x,y) cannot exceed its y-degree, it follows that the output list contains at most L.,
polynomials. A

With the basic theory out of the way, in the following three sections we describe low-complexity
algorithms for solving the interpolation and factorization problems.

VII. Koétter’s Solution to the Interpolation Problem

In this section, we will give a complete description of Kotter’s solution to the interpolation problem.
Much of this material has apparently never before appeared in print.

In general terms, the interpolation problem is to construct a bivariate polynomial Q(z,y) with minimal
(1,v)-degree that satisfies a number of constraints of the form

Dy sQ(e,) =0

where (r,s) € N> and (o,) € F2. Tt turns out that the mapping

Qz,y) = Dy sQ(a, 8)

is an example of what is called a linear functional on F[z,y]. It is no harder mathematically, and much
easier notationally, to consider the more general problem of constructing a bivariate polynomial Q(x,y)
of minimal weighted-degree that satisfies a number of constraints of the form

D;Q(xz,y) =0, fori=1,2,---

where each D; is a linear functional. The goal of this section is to describe an algorithm for solving the
more general problem.

A. Linear Functionals on F [x,y]

A mapping D : F[z,y] — F is called a linear functional if
D(aP + Q) = aD(P) + 8D(Q) (46)

for all P,Q € F[z,y] and all a, 8 € F. For us, the primary example of a linear functional is the mapping
that evaluates a Hasse derivative:

Qz,y) = Dy sQ(a, 8)

for fixed values of (r,s) € N* and (a, 3) € F2.

If we agree on a particular monomial order, say

¢()($,y) < ¢1(£L',y) <
so that any polynomial Q(z,y) has a unique expansion of the form

20

J
Q(xay) = Zaj ij(I,y)

where a; # 0, then any linear functional can be expressed as
J
D(Q) = a;d,
i=0

where d; = D(¢;(z,y)). The kernel of D is defined to be the set
K=kerD={Q:D(Q)=0} (47)

If D is a linear functional with kernel K, the corresponding bilinear mapping [P, @] p is defined as

[P.Qlp = D(Q)P - D(P)Q (48)

This simple mapping is a crucial part of the algorithms we present below; its key properties are given in
the following lemma.

Lemma 5. For all P, Q in Flz,y], [P,Q]p € ker D. Furthermore, if P > @ and Q ¢ K, then
Rank [P, Q]p = Rank P.

Proof. To simplify the notation, let = D(Q) and 8 = D(P). Then D([P,Q|p) = D(aP — Q) =
aD(P) — 8D(Q) = aff — pa = 0, which proves [P,Q]p € ker D. If a # 0 and P > @, the expression
[P,Q]p = aP — BQ shows that LM [P, Q]p = LM P, so that Rank [P, Q]p = Rank P. a

B. Problem Statement

Let Fr[x,y] denote the set of polynomials from F[x,y] whose y-degree is <L, i.e., those of the form

Qx,y) =Y ar(w)y* (49)

where each ¢i(z) € Flz]. We note that Fp[z,y] is an Flz]-module, i.e., if Q(z,y) € Frlz,y], and
p(z) € F[z], then p(x)Q(x,y) € Fr[z,y] as well.

Let Dy,--, D¢ be C linear functionals defined on Fp[x,y], and let K1, --, K¢ be the corresponding
kernels, i.e.,

K; = {Q(aj,y) € FL[x,y] : DZ<Q) = 0}

The cumulative kernels K, - -, K¢ are defined as follows: Ko = F[z,y] and fori =1,---,C,

21

Fi = Ki,1 OKZ
=Kin---NnkK;
={Q(z,y) € Fi[z,y] : D1(Q) = --- = D;(Q) = 0}

11 element from

Problem 1: The Generalized Interpolation Problem. Construct a minima
FCZKlﬂ-”ﬁKC

i.e., calculate

Qo(z,y) € min{Q(z,y) : D1(Q) =--- = Dc(Q) = 0}

As we noted above, the linear functional D; can be written as

Di(Q) =) a;d;,

Jj=0

for suitable coeflicients d;; € F'. Thus, the functionals D, ---, D¢ can be represented by a matrix with
C rows and a column for each monomial ¢;(z, y):

If d) denotes the jth column of D, i.e.,
d@ — (dij,daj,- -,ch)T
the condition Q(z,y) € K¢, i.e.,
Dz(Q(x,y)) =0 fori=1,---,C

where Q(x,y) is expressed as in Eq. (49), is equivalent to agd(®) 4 --- 4+ a;d"Y) = 0. Thus, the least .J
such that the first J columns of D are linearly dependent corresponds to a polynomial of least rank that
lies in K. It turns out that there is an established algorithm, the Feng-Tseng (FT) algorithm, that
is exactly suited to this formulation of the interpolation problem. We will discuss the FT algorithm in
Section VIII.

11 Here and elsewhere, “minimal” means minimal rank with respect to the given monomial order.

22

C. Kétter’s Algorithm

Kotter (K) [12,13] noticed, in effect, that if the cumulative kernels are F[z]-modules, Problem 1 admits
of a less complex solution than the one afforded by the FT algorithm.'? This observation applies to the GS
interpolation problem, since Corollary 8 says that if we enforce the conditions D, 4(a, 8) = 0 for s+r <m
in an order in which (r — 1,s) always precedes (r, s), the cumulative kernels will be F[z]-modules. For
example, (m — 1,1) lex order, which orders the pairs

(0,0),(0,1),---,(0,m —1),(1,0),(1,1),---,(L,m —2),---,(m — 1,0)

has the desired property.

In this subsection, we will describe, and prove the correctness of, Kotter’s algorithm for solving this
restricted class of problems.

In Kotter’s algorithm, the set of monomials from Fp [z, y], viz.,
My[z,y] = {z'y’ :0<i, 0<j <L}
is partitioned according to the exponent of y: My [z,y] = U;ZO M, where
M, = {z'y’ : i >0} (50)
This partition of My, induces a partition on Fp[z,y]: Fr[z,y] = SoU---U Sy, where
S; ={Q € Flz,y] : LM(Q) € M;} (51)
Kotter’s algorithm generates a sequence of lists Go, Gy, - -+, G¢, with
Gi = (9i0,"" "+ 9i,1)
where g; ; is a minimal element of KN S;. The algorithm’s output is the polynomial

Qo(z,y) = Og}l%lL gc,j (z,y)

which is a minimal element of K .

Kotter’s algorithm is initialized as follows:

120(n?) for K versus O(n?) for FT.

23

Given G;, Gi41 is defined recursively:
Jo=1{j : Dit+1(g:,;) = 0}
Jv={j: Dit1(g:,5) # 0}

If J; is not empty, among the polynomials g; ; with j € Ji, let g; j» be the one with minimal rank, and
temporarily denote g; j« by f:

f= ming;;

VISEA
(52)
= weamin
Then using the notation of Eq. (48), g;+1,; is defined for j =0,---, L:
Gi,j lfj S Jo
gi+1, = 9.5, flpiy i j € J1 but j # j* (53)
[@f, flp;y, HJ=7"
Theorem 9. Fori =20, ---,C, we have
gi; =min{g: g€ K;NS;} forj=0,---,L (54)

Proof. Induction on i: The case i = 0 being easily verified, let us assume the truth of Eq. (54) for
the index 4, and consider the index i + 1. We must show that Eq. (54) (with ¢ replaced by ¢ + 1) holds
for j =0,---, L. There are three cases to consider, cf., Eq. (53).

Case 1: j € Jy. In this case, we have, from Eq. (53),

Gi+1,5 = Gi,j

Since g; ; € Kl N S; by the induction hypothesis argl gi; € K11 because D;y1(g;;) = 0, it follows
that g;+1,; € K41 N.S;. But since g; ; is minimal in K; N.S;, it must also be minimal in the smaller set
?i-‘rl N Sj.

Case 2: j € Jy but j # j*. In this case, we have, from Eq. (53),

Gi+1,5 = 93,55 f1Diss

Thus, git1,; is an F-linear combination of g; ; and f, which are both elements of Ki_ by the induction
hypothesis. Thus, gi+1,; € K; as well. Also, g;11,; € K;41 by Lemma 5 and so g;11,; € K;NKj11 = Kit1.

By the induction hypothesis, g; ; € S; and f € S;«, where j # j*, which implies Rank g; ; # Rank f.

Thus, by Eq. (52), g;; > f. It follows from Lemma 5 that Rank g;1+1 ; = Rankg; ; and hence (since
gij € Sj) that gi11; € S5 as well.

24

But since_ gi+1,; has the same rank as g; j, which is minimal in KN S, it must be minimal in the
smaller set K;11 N.S; as well.

Case 3: j = j*. In this case, we have, from Eq. (53),

gi+1,j = [90f7 f]Di+1

Thus, gi+1,; is an F-linear combination of zf and f. But f € K, by the induction hypothesis, and
xf € K; because K; is an F[z]-module.’® Thus, g1, € K;. Also, git1,; € Ki+1 by Lemma 5 and so
Git1,; € Ki N K1 = K.

Also, f € S; by the induction hypothesis, and since S; is closed under multiplication by z, x f € S; as
well. But clearly «f > f, and so by Lemma 5, Rank g;11,; = Rankxg; j, which means (since zf € S;),
that gi+1,; € S; as well.

It remains only to prove that g;11; is minimal in Kiiin S;. If it is not minimal, there exists a
polynomial h € fiHﬂSj such that h < g;41,;. Also, since h € ?iﬂSj, f < h. But Rank g; 41 ; = Rankzf,
and since there can be no polynomial f" € S; with Rank f < Rank f’ < Rankzf, it follows that h = f.
By a suitable normalization, we can arrange to have the leading coefficient of h equal to that of f. Now
consider the polynomial f’ = h — f. Clearly f' € K;, and f' < h = f. Also, D; 1(f") # 0 since
D;+1(h) =0 (since h € K;41) and D;+1(f) # 0 (since j € Jy).

In summary, if g;41,; is not minimal in KN S;, we can construct a nonzero polynomial f’ such that

(55)

But this contradicts Eq. (52), which says, in effect, that f is a minimal element of K; \ K. a

13 Cf. the remarks at the beginning of this subsection.

25

D. Pseudocode for Kbtter’s Algorithm

/* Kdtter’s Algorithm -- General Formulation */
/* Complexity O(C?) %/

BEGIN (Given L, (D;),, arbitrary monomial order)

1. FORj=0toL

2. g =y

3. FORi=1to C' DO

4. FOR j = 0 to L DO

5. A, = D;(g;) /* jth discrepancy */

6. jo=1{j:A; #0}

7. IFj 40

8. J* :=argmin {g; : A; % 0} /* "min" wrt monomial order */
9. =g A=Ay

10. FOR j € J DO

11. IF (j # J*)

12. g; = Ag; —A; f /* No change in Rank g; */

13. ELSE IF (j = Jx)

14. g; =A(zf) —Di(zf)f /* Rank g; increases by min */

15. Qo(z,y) = minf:o{gj(x’y)}
END

Theorem 10. At the end of Kdétter’s algorithm,
gj(z,y) = min{g € Ko N S;}

Qo(r,y) = min{g € K¢}

where the “min” is with respect to the given monomial order.

26

/* Kotter’s Interpolation Algorithm -- Special Case for GS Decoding */

/* Complexity O(n?m*) if m; = m for all i */

BEGIN (Given L, (o, (3i)q, (m;)?1,(1,k — 1) wdeg monomial order)
1. FORj=0tolL

g9;i =y
2. FOR¢=1 ton DO
3. FOR (7,5) = (0,0) to (m; —1,0) DO /* by (m; —1,1) lex order */
4. FOR j = 0 to L DO
5. Aj = Dy sg;(ou, Bi) /* jth discrepancy */
6. J={j:A; #0}
7. IF J # §
8. J* = argmin{g, : j € J}
9. [=g A=Ay
10. FOR j € J DO
. IF (j # %)
12. g;i =A0Ag; —A; f /* No change in wdeg */
13. ELSE IF (j = Jx*)
14. 9 =A@ —a,)f /* wdeg increases by 1 */
15, Qo(z,y) = min;{g;(z,y)} /* The Interpolation Polynomial */
END

Derivation of Line 14:
g = A(xf) — Di(zf)f

= Dr,sf<ai>ﬁi)) (xf(x,y)) - Dr,s (xf(x,y))

z=ay) f(-'lf,y)

y=08;

= D, f(as, 3i) - (xf(x,y)) — @iDrs f(, Bi) - f(z,y) (Corollary 8)
= Dr,sf(ahﬂi)f('ray) (‘T - 017)

=K(x—a;)f

Theorem 11. When Kdétter’s Interpolation Algorithm terminates,
gij(z,y) = min{f € I(m) N Fr[z,y]NS;}
QO(xvy) = mln{f € I(m) N FL[xvy]}

27

where

I(m) ={Q(z,y) :ord (Q : ;, 3;) =my,i=1,--- n}

/* Kdtter’s Interpolation Algorithm -- Special Case m =1 */

/* Complexity O(n?) */

BEGIN (Given L, (o, 3;)q,(1,k — 1) wdeg to order polynomials)
1. FORj=0¢toL

g =y /* If re-encoding trick is not used */
2. FORi=1tonDO
3. FOR j = 0 to L DO
4. A =gy, Bi) /* jth discrepancy */
5. J:={j:A; #0}
6. IF j # ()
7. Jx = argmin{g; : j € J}
8. [=gjs A=A
9. FOR j € J DO
10. IF (j # j*)
11. g =A0Ag; —A; f /* No change in wdeg */
12. ELSE IF (j = Jx)
13. gi =(@—a)f /* wdeg increases by 1 */
4. Qo(z,y) :=min;{g;(z,y)} /* The Interpolation Polynomial */

END

VIIl. An Alternative to Kétter’s Solution: The Feng-Tzeng Algorithm

In this section, we will describe the Feng—Tzeng algorithm, which inspired Kotter, and which standing
alone can provide a practical (O(n?)) solution to the interpolation problem.

Let A = (a;;) be an m x n matrix over F' with m < n. Let a; = (a;1,---,a;,) denote the ith
row of A, and let a¥) = (ay j,---,a,, ;) denote the jth column. The FT algorithm [8] finds the largest
integer L such that the first L columns of A are linearly independent. It also produces an L + 1-vector
d= (dl, - dp, 1) such that dla(l) —+ -+ dLa(L) + allth) = .

28

/* The Feng-Tzeng Algorithm */
/* Complexity O(n?) */
BEGIN
FOR u =1 to n DO
p(u) =0; 6(u) = 0;
s :=0
DO
1. s:=s+1;7r:=0; b:=05"Y1; columnblocked := false
/* any b of the form biby---bs_11 will do.*/

DO
2. ro=r+1
3. A:=a,-b
4. IF (A #£0)
5. IF (there is a u < s for which p(u) =1r)
6. b:—b%cu/* nowa;-b=0for all 1 <i<r.x/
7. ELSE (there is no u < s for which p(u) =7)
8. p(s) :==r; §(s) :=A; ¢cs :=b

columnblocked := true
WHILE (r < m and columnblocked = false)
WHILE (columnblocked = true)
9. ¢s:=b; L :=s5-1
END

The following theorem describes the most important properties of the F'T algorithm.
Theorem 12. First,
p(1),---,p(L) are distinct elements of {1,---,m}

Next, fors=1,---,L,

a . — 0 for 1 <r < p(s)
T T 6(s) £ 0 for = p(s)
Finally,
ar-cr41 =0 for1<r<m
Proof. See [8].

29

Corollary 10. The first L columns of A are linearly independent. The first L 4+ 1 columns of A are
linearly dependent. In fact, if cp 1 = (d1,---,dr, 1), then

dia® 4 ... 4 dpa® 4 all+h — g (59)

Proof. Denote by Ap 41 the m x (L + 1) matrix formed by the first L 4+ 1 columns of A, i.e.,

Aps = (au) a<L+1>)
and by C the (L + 1) x (L + 1) matrix whose rows are the vectors ¢1,---,¢r,¢r11, i.€.,
e 100 0
C = ' —[* ! :
cL
CL+1 * % % 1

Now consider the m x (L + 1) matrix D = Az 11CT. Because C has the lower triangular form shown, the
first s columns of D are column-equivalent to the first s columns of Ay, for s =1,---, L 4+ 1. But the
(r,s)th entry in D is a, - cs, and so by Eq. (57), the sth column of D has p(s) — 1 leading 0’s followed
by the nonzero entry d(s), for s = 1,---,L. But by Eq. (56), the indices p(1),---,p(L) are distinct,
which implies that the first L columns of D, and hence also those of A, are linearly independent. Finally,
Eq. (58) says that the L + 1st column of D is identically zero, which implies the first L+ 1 columns of D,
and hence also of A, are linearly dependent. Equation (58) shows that Eq. (59) is true. a

Example 12. (Taken from [8]). Let A be the following 6 x 6 matrix over GF(2):

1 2 3 4 5 6
1/0 01 1 01
211 0 0 0 0 1
A 310 0 0 0 0 O
410 1 0 1 0 O
5({0 0 0 1 1 1
6\0 0 1 0 1 1
The result of running the FT algorithm is
C1 1
Co 0 1
C = C3 0 0 1
cs {0 1 1 1
cs \0 1 1 1 1

30

ar /0 0 1 0 0
all 0 0 0 0
D=AC"=as| 0 0 0 0 0
a0 1 0 0 0
as\0 0 0 1 0

The first four columns of D show that p(1) = 2, p(2) = 4, p(3) = 1, and p(4) = 5. Thus, L = 4 and the
leftmost linear dependence among the columns of A is

a® 1L a® 1 a® L a®

Example 13. Let F' = GF(8), with primitive root v satisfying 4> = v+ 1. Let’s use the FT algorithm
to construct a two-variable polynomial Q(z,y) of minimal (1, 3)-revlex rank such that ord (@ : 1,v) > 1,
and ord (@ : v,7%) > 2. There are four constraints: Qoo(1,7v) = Qo.0(7,7%) = Qo.1(7,7°) = Q1.0(7,7°)
= 0, so we know that some linear combination of the first five monomials listed in (1, 3)-revlex order,
viz., 1, z, 22, 23, y, will suffice. Thus, for the matrix A we will take the 4 x 5 matrix whose columns are
indexed by the first five monomials {1, z, 2%, 23, y} in (1, 3)-revlex order, and whose rows are indexed by
the four coefficient constraints corresponding to the conditions (1) Qo.o(1,7) = 0; (2) Qo.0(7,7°) = 0;
(3) Qo1(7,7%) = 0; and (4) Q1,0(7,7°%) = 0. Here is a summary of the work:

gl oy
az [0 0 0 0 1
a; \0 1 0 ~2 0
Cc1 1
- Co 1 1
| v 1
ca \Y?2 2 1 1
Ci Cy C3 C4
a1 0 0 0
p-acr=2| 1 27 00

as{ 0 0 0 O

ay 0 1 1 3 0

31

The first three columns of D tell us that p(1) =1, 6(1) = 1; p(2) = 2, 6(2) = +3; and p(3) = 4, §(3) = 7>.
Thus, the algorithm returns L = 3, and ¢4 = (72,72, 1,1), i.e., Q(z,y) = v2 +~2x + 22 + 23 is the unique
(up to scalar multiplication) polynomial of minimal (1, 3)-revlex rank satisfying the given conditions.

Example 14. [16, Example 9.3]. Let us use the FT algorithm to find the “linear complexity” of the
sequence (51,52, -+,5s) = (1,1,1,0,1,0,1,0). The appropriate matrix A is as shown below. It has the
general form

S1 Sy S3 -+ S; Sy

Sy S3 Sy -+ Sg
A=

Sz Ss

Ss

(The missing entries are “don’t cares” that do not enter into the calculations.) According to [8], the
algorithm stops when s +r > n + 1, i.e., when otherwise the next entry of A to be processed is a don’t
care. The final vector c5 = (0,0,1,0,1) indicates that the “shortest” linear recurrence relation satisfied
by the given sequence is

Sj :Sj_g fOI“j 25

(This example is somewhat pathological, since in general an 8-term sequence (57,52, -, Ss) will satisfy
a degree-4 recurrence relation of the form

Sj = alSj,l + 0'2ij2 + Ugijg + 0’4ij4 fOI‘j Z 5

It appears to be an accident that o3 = 04 = 0 in this case.)

32

A=
511 0 1 0
610 1 O
711 0
8 \0
ci |1
co |1 1
C=cl1 0 1
cy |1 0 1 1
cs; \0 0 1 0 1
Ci C C3 C4 Cj
aa[1 0 0 0 O
aa[1 0 1 0 O
D= A,0" =

a1 1 0 0 O

as, [0 1 0 1 O

as\1 1 0 0 0

IX. The Roth—Ruckenstein Solution to the Factorization Problem

In this section, we will present the most efficient algorithm currently known for solving the factorization
problem, due to Roth and Ruckenstein [21]. Our exposition includes an improved stopping rule and a
“depth first search” implementation.

The factorization problem is this: given a polynomial Q(z,y) € F|xz,y], find all polynomials f(x) of
degree <v such that (y — f(z)) | Q(z,y). Alternatively, by Lemma 3, find all f(z) € F,[z] such that

Q(a:,f(:v)) =0 (60)

If Eq. (60) holds, we call f(z) a y-root of Q(z,y). In this section, we will describe an algorithm due to
Roth and Ruckenstein [21] for finding y-roots.

33

If Q(z,y) is a two-variable polynomial such that ™ | Q(z,y), but 2™+ [Q(z,y), define

Q(z,y)

xm

(Qz,y)) =

Although Q(0,y) might be identically zero, nevertheless (Q(0,y)) is a nonzero polynomial in y (e.g., if
Q(z,y) = =y, Q(0,y) = 0 but (Q(0,y))) =y).

Suppose
flx)=ao+a1x+ -+ aya® (61)

is a y-root of Q(z,y). We will see that the coefficients ag, a1, -, a, can be “picked off,” one at a time.
As a start, the following lemma shows how to determine ag.

Lemma 6. If (y — f(m)) | Q(z,y), then y = f(0) = ap is a root of the equation
QO(O7 y) =0

where Qo(z,y) = (Q(z,%))).

Proof. By definition, Q(z,y) = x™Qo(x,y) for some m > 0. Thus, if (y — f(x))|Q(x,y), then
(y — f(z)) | Qo(x,y) as well, so that Qo(z,y) = ((2))To(z,y) for some polynomial Ty(z,y). Thus,
y = f(0) is a solution of the equation Qg (0 y) = a

We now proceed by induction, defining three sequences of polynomials, f;(x), Tj(z,y), and Q,(x,y),
for 7 =0,1,---,v, as follows.

Initially, fo := f(z), Qo(z,y) := (Q(z,y)). For j > 1, define

fi(e) = (fi1(x) = f;1(0)) /z = aj + - + ayz"™? (62)
Tj(z,y) = Qj-1(z, 2y + aj—1) (63)
Qj(z,y) == (Tj(z,y)) (64)

Theorem 13. Given f(z) = ap+ a1z + -+ a2’ € F,[z], and Q(z,y) € Flz,
fi(x) and Q;(z,y) as in Egs. (62) and (64). Then for any j > 1, (y — f(z)
(v = £5(2) [Q;(z,y).

Proof. We will show that if j > 1, (y — f;(x)) |Q;(z,y) < (y — fi-1(2)) | Qj—1(z,y).

define the sequences

yl,
|Q(z,y) if and only if
1. (—). Assuming (y — f;(2)) |Q;(z,y), by Eq. (64), T;(z,y) = 2™Q,(z,y) for some m > 0. Then

(v = fi(2) [2™Qj(x,y) = Tj(x,y) = Qj-1(z, 2y + a;_1)
Therefore,

34

Qj—1(z,xy+a;_1) = (y — f;(2))U(z,y) (65)

for some U(x,y) € Flz,y]. Now substitute (y — a;_1)/x for y in Eq. (65):

Y—a;_ Y—a;_
R e) LA G (66)
Multiplying both sides of Eq. (66) by a sufficiently large power of x, we obtain

ILQj—l(Ia y) = (y - fj—l(x))v(xa Y)

for some V(z,y) € Flz,y]. Thus, y— f;—1(z) divides 22Q;_1(z,y); but oL and y — f;_1(x) are relatively
prime, so y — fj_1(x) divides Q;_1(z,y), as asserted.

2. («). Assuming (y — fj-1(2)) | Qj-1(2,),
Qj-1(z,y) = (y — fi—1(2))U(z,y)
for some polynomial U (z, y). Thus, by Eq. (63),
Tj(x,y) = (xy +aj_1 — fi—1(x)) - Uz, 2y + aj_1)
=x(y - fi(2)) Ulw, 2y + a;-1)

which proves that (y—f;(x)) | T;j(z, y). But since T}(z,y) = 2™Q;(z,y), it follows that (y—f;(z))|Q;(x,y)
as well. A

Here is the “picking off” theorem.

Corollary 11. [21, Lemma 5.1]. If (y — f(2)) | Q(z,y), then y = a; is a root of the equation

Qj(o,y):O’ forj:O’...,v

Proof. By Theorem 13, y — f;(x) divides Q;(z,y) for all j > 0. Substituting x = 0 yields the stated
result, since f;(0) = a;. a

Corollary 12. If y| Qut1(z,), ie., if Qui1(x,0) = 0, then f(z) = ap + -+ + a,z" is a y-root of
Q(z,y)-

Proof. Note that, by Eq. (62), f;j(z) = 0 for all j > v + 1, so that the hypothesis y | Q,+1(z,y) says
that (y — fv+1(x)) | Qu+1(x,y). Now apply Theorem 13. a

The following lemma provides some insight into the all-important transformation Q(z,y) —
Q(z,zy + a).

35

Lemma 7. If

T, y) = Zwigi(y)

= Z 7'y’ D;g:(0)
4,J
then

x:ry—i—a Z(I/‘yng’Lj

where D; denotes the ith one-dimensional Hasse derivative.

Proof. By Theorem 4, we have

s(z+a) Zz D,gs(a

and so
Q(z,z + a) Z Z 2" D,gs(a (67)

Substituting zy for z in Eq. (67), we have

Q x :chra szJrr rDrgs)
= > 2'yD;gi ;(a)
i,J

Symbolically, Lemma 7 can be summarized as follows:

90(0) 91(0) 92(0) 93(0)
D1go(0) D1g1(0) D1g2(0) D1gs(0)
Q@,Y) = | Dygo(0) D2gi(0) Daga(0) Dsgs(0)

go(a) gi(a) ga(a) gs(a)

0 Digo(a) 1)1915a§ 19192Ea§

oy 4 a) = 0 0 Dsgo(a) Dagi(a
Q(z,zy + a) 0 0 96) Dggo(a)

36

In words: if the entries of column j of Q(z,y) are interpreted as the coefficients of a polynomial, say
g;j(2), then the entries of the jth diagonal of Q(z,zy + a) are the coefficients of the polynomial g;(z + a).

We now give a pseudocode representation of the RR algorithm. It takes as input a bivariate polynomial
Q(z,y) and positive integer D, and returns as output the set of all y-roots of Q(x,y) of degree <D. The
strategy adopted by the algorithm is “depth-first search,” as described, for example, in [6, Section 23.3].

10.
11.

© ® N e e W

/* The Roth-Ruckenstein Algorithm */
/% Input: {Q(z,y), D}; Output: {f(z): (y— f(2))|Q(z,y);deg f(x) < D}. +/

BEGIN

7[0] = NIL; deg[0] = —1; Qo(z,y) = Q(z,y);
t=1; u=0

DFS[u]

END

/* DFS[u]: Depth-first search beginning at u */
BEGIN
IF (Qu(2,0) = 0)
Output fi,j(#) /* using traceback */
ELSE IF (deg[u] < D) /* explore edges from vertex u */
R = RootList[Q(0,y)]
FOR (o € R) DO
v=t; t=t+1;
w[v] = u; deglv] = deglu] + 1; Coeff[v] = a;
Qu(@,y) = (Qu(z, zy + o))
DFS[v]
END

Glossary:
7[u] = Parent of u
deg[u] = “degree” of u = distance from root - 1
Coeff[u] = polynomial coefficient at u
fiu)(z) = “partial” polynomial at u :

= Coeff[u)zdesl¥l 4+ Coeff[r[u]]zdeslm] 1 ...
Qu(z,y): See Eq. (64)

Example 15. [21, Example 7.1]. Let F' = GF(19) and let us use the RR algorithm to find the y-roots
of the degree <1 of the polynomial Q(z,y) given below.

37

Q(z,y) = (4+ 122 + 522 + 112° + 82* + 132°)
+ (14 + 14z + 922 + 1623 + 82ty
+ (14 + 13z + x2)y2
+ (24 11z + 2?)y?
+ 17y

In general, the RR algorithm navigates its way through a tree structure, with the potential y-roots
forming paths from the root (vertex 0). This particular example is summarized in Table 1 and Fig. 1.
Each vertex is labeled with a “timestamp,” which indicates the order in which the vertices are visited.
The edge labels descending from vertex [u] correspond to the roots of the equation @, (0,y) = 0, i.e.,
RootList[u]. Similarly, the label on the edge going up from wu to w[u] is Coeff [u]. Finally, the termination
symbols indicate terminal vertices, i.e., either vertices corresponding to y-roots of Q(z,y) (unshaded icon)
or vertices whose depth exceeds v (shaded icon).

Table 1. Summary of Example 15.

w mlu) deglu] Coeff [u] RootList[u]
0 NIL 1 NIL {18,18,14,8}
1 0 0 18 {14,15}
2 1 1 14 -
3 1 1 15 -
4 0 0 14 {16}
5 4 1 16 —
6 0 0 8 {8}
7 6 1 8 -

" %

deg 0 | 1

Fig. 1. The RR tree for Example 15.

38

e We begin with Vertex 0 (7[0] = NIL; deg[0] = —1):

y |14 14 9 16 8
T2 l14 o131

|l 2 11 1

y* \ 17

Qo(x,0) =4+ 12z + --- # 0;deg[0] < 1;
Qo(0,y) = 4 + 14y + 14> + 20> 4+ 179"

= 17(y — 18)*(y — 14)(y — 8)

RootList[0] = {18, 14,8}

e Vertex 1 (7[1] = 0; deg[1] = 0; Coeff [1] = 18):

Q1($7 y) = <<Q0($C, Ty + 18)>>

y3 10 11 1

yt 17

Q1(x,0) =154 1da +--- £ 0,deg[1] < 1
Q1(0,y) = 15 + 2y + 1532
= 15(y — 14)(y — 15) = 0,

Rootlist[l] = {14,15}

39

o Vertex 2 (7[2] = 1; deg[2] = 1; Coeff[2] = 14):

1

3

Y

= g2 15
Y

Y

Q2(z,0) = 0;
Output fig)(z) = 142 + 18

e Vertex 3 (7[3] = 0; deg[3] = 1; Coeff[3] = 15):

Qs(z,y) = (Qi(x,zy +15))

1 z 22

1 2 18 12
15 4 8
15 12

Y

y?
y3
y

Q3 ($, O)
(No Output)

o Vertex 4 (w[4] = 1; deg[4] = 0; Coef [4] = 14):

4 10 18

1

Qa(z,y) = (Qolz, zy + 14))
1 z 22
1 (13 12 7
y | 17 6 17
= 2 7 0
y? 4

Y

Qa(,0) =

Qa(0,y) = 13 + 17y
Rootlist[4] = {16}

40

7
8§ 4
10 13

17

2418z + - # 0;deg[3] £ 1;

1
17

134+ 122 + - - # 0;deg[4] < 1;

o Vertex 5 (m[5] = 4; deg[5] = 1; Coeff [5] = 16):

@s(x,y) = (Qalz,zy + 16)))

y |17 2 11 5 16

= 92 T 2 7 10
Y3 4 16
Y

Q5(£L'70) =0
Output fi5(z) = 162 4 14
e Vertex 6 (7[6] = 0; deg[6] = 0; Coefl [6] = 8):
Qs(z,y) = (Qo(z, zy +8))
1 z 22 2% =z

1 (14 7 6 15 13

y |3 16 8 16 8

= g2 6 11 6 0
Y3 14 11 1
yt 17

Qs(x,0) = 14+ Tx + - -+ # 0;deg[6] < 1;
Qs(0,y) = 14 + 3y
RootList[6] = {8}

e Vertex 7 (7[7] = 6; deg[7] = 1; Coeff [7] = 8):

Qr(z,y) = (Qs(x, 2y +8))

1 = 2?2 23 z* 2P

1
vy 136 3 9 10
= 42 6 5 15 5
¥ 4 4 1
yt 17
Qr(2,0) =0

Output fi7)(z) = 8z +8

Thus, the output of the RR algorithm in this case is

{14z + 18,16z + 14,8z + 8}

M

[1]

[9]

[10]

[15]
[16]

[17]

References

S. Ar, R. Lipton, R. Rubinfeld, and M. Sudan, “Reconstructing Algebraic Func-
tions from Mixed Data,” SIAM J. Computation, vol. 28, no. 2, pp. 488-511,
1999.

E. R. Berlekamp, Algebraic Coding Theory, New York: McGraw-Hill, 1968.

E. R. Berlekamp and J. L. Ramsey, “Readable Erasures Improve the Performance
of Reed—Solomon Codes,” IEEE Trans. Inform. Theory, vol. 24, no. 5, pp. 632—
633, September 1978.

R. E. Blahut, Theory and Practice of Error-Control Codes, Reading, Massa-
chusetts: Addison-Wesley, 1983.

K.-M. Cheung, “More on the Decoder Error Probability for Reed—Solomon
Codes,” IEEFE Trans. Inform. Theory, vol. 35, no. 4, pp. 895-900, July 1989.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
Cambridge, Massachusetts: MIT Press, 1990.

D. Cox, J. Little, and D. O’Shea, Ideals, Varieties, and Algorithms, New York:
Springer-Verlag, 1992.

G.-L. Feng and K. K. Tzeng, “A Generalization of the Berlekamp—Massey Al-
gorithm for Multisequence Shift-Register Synthesis with Applications to Decod-
ing Cyclic Codes,” IEEE Trans. Inform. Theory, vol. 37, no. 5, pp. 12741287,
September 1991.

V. Guruswami and M. Sudan, “Improved Decoding of Reed—Solomon Codes
and Algebraic Geometry Codes,” IFEE Trans. Inform. Theory, vol. 45, no. 6,
pp. 1757-1767, September 1999.

H. Hasse, “Theorie der hoheren Differentiale in einem algebraishen Funcktio-
nenkdrper mit vollkommenem Konstantenkorper nei beliebeger Charakteristic,”
J. Reine. Ang. Math., vol. 175, pp. 50-54, 1936.

D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental Algo-
rithms, Reading, Massachusetts: Addison-Wesley, 1973.

R. Kotter, On Algebraic Decoding of Algebraic-Geometric and Cyclic Codes,
Linképing Studies in Science and Technology, no. 419 (Ph.D. Dissertation, De-
partment of Electrical Engineering), Linkoping U., 1996.

R. Kotter, “Fast Generalized Minimum-Distance Decoding of Algebraic-
Geometry and Reed—Solomon Codes,” IFEE Trans. Inform. Theory, vol. 42,
no. 3, pp. 721-736, May 1996.

R. Kotter and A. Vardy, “Algebraic Soft-Decision Decoding of Reed—Solomon
Codes,” submitted to IEEE Trans. Inform. Theory, preprint dated May 31, 2000,
and preprint dated August 31, 2001.

J. L. Massey, “Shift-Register Synthesis and BCH Decoding,” IEEE Trans. In-
form. Theory, vol. 15, no. 1, pp. 122-127, January 1969.

R. J. McEliece, The Theory of Information and Coding, 2nd ed. Cambridge,
England: Cambridge U. Press, 2002.

R. J. McEliece and L. Swanson, “On the Decoder Error Probability for Reed—
Solomon Codes,” IEEE Trans. Inform. Theory, vol. IT-32, no. 5, pp. 701-703,
September 1986.

42

[18]

[19]

[20]

[21]

[22]
[23]
[24]

[25]

W. H. Mills, “Continued Fractions and Linear Recurrences,” Mathematics of
Computation, vol. 29, no. 129, pp. 173-180, January 1975.

R. Nielsen and T. Hoeholdt, “Decoding Reed—Solomon Codes beyond Half the
Minimum Distance,” in Cryptography and Related Areas, J. Buchmann, T. Hoe-
holdt, H. Stichenoth, and H. Tapia-Recillas, eds., Springer-Verlag, pp. 221-236,
2000.

I. S. Reed and G. Solomon, “Polynomial Codes over Certain Finite Fields,”
J. Soc. Industrial Appl. Math., vol. 8, pp. 300-304, 1960.

R. Roth and G. Ruckenstein, “Efficient Decoding of Reed—Solomon Codes be-
yond Half the Minimum Distance,” IEEE Trans. Inform. Theory, vol. 46, no. 1,
pp- 246257, January 2000.

C. E. Shannon, The Mathematical Theory of Communication, Urbana Illinois:
University of Illinois Press, 1949.

M. Sudan, “Decoding of Reed—Solomon Codes beyond the Error-Correction
Bound,” J. Complexity, vol. 13, pp. 180-193, 1997.

L. R. Welch and E. R. Berlekamp, “Error Correction for Algebraic Block Codes,”
U.S. Patent no. 4,633,470, December 30, 1986.

L. R. Welch and R. A. Scholtz, “Continued Fractions and Berlekamp’s Algo-
rithm,” IEEE Trans. Inform. Theory, vol. 25, no. 1, pp. 19-27, January 1979.

43

Appendix A
The Function F(x) and the Numbers K,

In this appendix, we collect for reference a number of technical results that are needed in order to give
precise descriptions of various parameters associated with the G.S(m)-decoder.

l. The Function F (x)

In this subsection, we collect for reference the important properties of the function F(x), defined for
x>0 by

F(z) = S (a® + 2+ f(2)) (A-1)

N[=

where

f(x) = {x} (1~ {z}) (A-2)

and {z} denotes the fractional part of z, i.e., {} = z — |z]. As we will see below, Eq. (A-5), the function
F(z) is piecewise linear and its graph consists of a sequence of chords connecting the points

loo.a.0.09.66. (m ("))

as shown in Fig. A-1.

(x2 + x)/2

| | | | | |
0.5 1.0 15 20 25 3.0

Fig. A-1. The functions F (x) and
(x2+x)/2,0<x<3.

44

Of course the reason F'(z) interests us is Corollary 1:

A(K,v) =vF (5> (A-3)
v
Here are the important properties of F(x).
Theorem A-1. F(x) has the following properties.
1, 1)
5(3@ +1‘)§F(m)§§(x+1/2) , forallz>0 (A-4)
m
F(x):mx—(2>, form—-1<z<m (A-5)
Fl(z) =[], if x¢N (A-6)
m
F(z) > mx — (2>, forallm>1 (A-7)
F(z) < m2—;):1w2, forz>m (A-8)
m)
F(mz) < mF((m +1Daz), ifz>1 (A-9)

Proof of Eq. (A-4). These inequalities follow immediately from Definition (A-1) and the observation
that 0 < f(z) < 1/4. a

Proof of Eq. (A-5). This follows from Definition (A-1) and the observation that m —1 < ax < m
implies {z}(1 —{z}) = (x —m+ 1)(m —2) = —22 + 2m — 1)a — m(m — 1), so F(x) = (1/2)(2* + z —

22+ (2m — Dz —m(m —1)) = mz —m(m —1)/2.)
Proof of Eq. (A-6). This follows immediately from Eq. (A-5). a
Proof of Eq. (A-7). This follows from Eq. (A-5) and the fact that F(x) is convex U. a

Proof of Eq. (A-8). If m and m/ are positive integers, define

s |- —a? (A-10)

f4+1 m+1
Pmm’ é ! 1 - mn
wela) & ' 4 = () T

Note that Py, ,,/(0) = —(m’;l) < 0. The discriminant of P, ,,/(z) is

which is <0 if m’ > m. Hence, if m’ > m, Py, () never changes sign and therefore must be <0 for
all z. But by Eq. (A-5), Py (z) = F(z) — ([m + 1]/2m)2® for m' <z <m’/ + 1. a

Proof of Eq. (A-9). We have, by routine algebra,

(m+ 2)F(mz) — mF((m+1)z) = % (gc — 224+ mTHf(mx) — f((m+ 1)x)>

where f(z) is as defined in Eq. (A-2). Thus, Eq. (A-9) is equivalent to
Fo(r)<a2*—2 forxz>1 (A-11)

where
~ 2
Funlo) 2 (14 2) flme) = £(m + 1) (A-12)
Since the function F),(x) is periodic of period 1, Eq. (A-11) is equivalent to

Fo)<(z+1)?—(z+1)=2+2 forz>0 (A-13)

as illustrated in Fig. A-2. To prove Eq. (A-13), we need a lemma.

Lemma A-1. F,,(x) satisfies the following (see Fig. A-3):
—fl@) < Fp(z) < 1+2/m) f(x) forz>0 (A-14)

Foz)=(x+1Dz for0<z<1/(m+1) (A-15)

ool b by by 1y a o Tl

S
o [
1
IIII

0.0 0.5 1.0

n
o

Fig. A-2. The functions F4 (x), x2 + x, and x2 — x, 0 < x< 2.

46

0.5 T T T T T T T T T T T T T T T T T T T
0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

o
o |
o
o
-
o
-
()]
\S]
o

Fig. A-3. The function F, (x), and friends, 0 < x< 2.

Proof. A tedious exercise in algebra yields the following: For =z € [k/m,(k + 1)/(m + 1)], k =
0,---,m—1:

mFy, () = ma® + m(2k + 1)z — 2k(k + 1) (A-16)
mFy(z) — (m+2)f(z) =2((m+ 1)z — (k+1))(z + k) (A-17)
mFy,(z) + mf(x) = 2(ma — k)(k+1) (A-18)

and for z € [k/(m+1),k/m], k=1,---,m:

mF,, () = ma® — (2m? — 2km + 3m)z + 2k(m — k + 1) (A-19)
mFy,(z) — (m+2)f(z) =2((m+ 1z —k)(z — (m—k+1)) (A-20)
mFy(z) +mf(x) = —2(mx —k)(m—k+1) (A-21)

Note that Eq. (A-15) follows immediately from Eq. (A-16) if we let k& = 0. To prove Eq. (A-14), we
consider two cases:

Case A-1: z € [k/m,(k+1)/(m + 1)], for k = 0,---,m — 1. Here the right side of Eq. (A-17) is
negative, which proves the right inequality of Eq. (A-14). On the other hand, the right side of Eq. (A-18)
is positive, which proves the left inequality of Eq. (A-14).

Case A-2: z € [k/(m+1),k/m], for k =1,---,m. Here the right side of Eq. (A-20) is negative, which
proves the right inequality of Eq. (A-14). On the other hand, the right side of Eq. (A-21) is positive,
which proves the left inequality of Eq. (A-14).

47

Finally,

(A_zls)xQ—i—x for0<z <

Frn

(A-14)
< (1+2/m)f(x)<a*+ax forx>

m+1

which completes the proof of Eq. (A-13) and therefore Eq. (A-9). a

Il. The Numbers Km

The GS(m)-decoder for an (n,k = v+1) RS code is guaranteed to correct any pattern of up to ¢ errors
if there exists a positive integer D such that'4

m(n—t)> D
A-22)
1 (
n(m;—) < A(D,v)
which is equivalent to the condition
1
A(m(n —t),v) > n(m;—) (A-23)

Using K (for “Korrect,” or “Koradius”) for n — ¢, an equivalent statement is that K correct received
symbols are sufficient to guarantee that G.S(m) can identify the transmitted codeword if

A(mE,v) > n(m; 1) (A-24)
Now define for 1 < v < n,
Ky 2 {%”HW (A-25)
K, = min{K:A(mK,v)>n(m;1>} form >1 (A-26)
Koo 2 |Von] +1 <(KOO 1) <wn < Kgo) (A-27)
The most important properties of the sequence K, K1, -, K, -+, K are given in the following theo-

rem. We might summarize these properties as follows:

MHere D=1+ deg; , Q(z,y).

48

Ky (Conventional decoder)
> K; (Sudan decoder)

> K,, (GS decoder with interpolation multiplicity m)

= Ko (Most powerful, most complex GS decoder)

Theorem A-2.
Ko> Ko zv+1 (A-28)
Ky > K, (A-29)
K, > Ks iftm>1 (A-30)
K> Kyt ifm>1 (A-31)
K,, = K, for all sufficiently large m (A-32)

Proof of Eq. (A-28). First note that, if z and y are real numbers,
x>y implies [z]> |y|+1 (A-33)
Now by the arithmetic-geometric inequality,

n+v+1

s 2Vt hn> von (A-34)

Combining Eq. (A-34) with Eq. (A-33), we get Eq. (A-28). a

Proof of Eq. (A-29). Since K is defined in Eq. (A-26) as the least integer K such that A(K,v) > n,
it is sufficient to show that A(Ky,v) > n. But

(A-3) (A7) s (A-25)
A(Kp,v) =" oF (Ko/v) > v(Q2Ky/v—1)=2Ky—v > n+1

Proof of Eq. (A-30). We will show that for all m > 1,
1
A(m(Kas — 1),0) < n(m N) (A-35)

which implies K, > K, for all m > 1. Here we go:

49

A(m(Ks —1),0) D) R (mKoov_ 1)

(A-8) —1)2
= vm+1m2(K°°2 1)

(since m(Ko — 1)/v > m by Eq. (A-28))

2m v

< n<m + 1> (since (Ko — 1)> < vn by Eq. (A-27))

2
a
Proof of Eq. (A-31).
1\ (A-26)
n(m;r > < A(mK,,v)
D) R (mK,,/v)
e p 1)K, ing K > v+ 1
< vm—+2 (m+1) m/v) (using K,,, >v+1)
(A-3) M
Thus,
m+1\m+2 m+ 2
A 1)K, — =
((m+1) v)>n< 5 > - n(9 >
which implies [see Eq. (A-26)] that K11 < K. a
Proof of Eq. (A-32). We need to show that, for all sufficiently large m,
1
A(mKs,v) > n(m;) (A-36)
We have
- K A-4) m2K? 1 K2
A(mEo,v) = oF (T2 R, (m T
v 2v 2 m+1 uvn
which proves that Eq. (A-36) holds for (m/[m + 1])(KZ /vn) > 1, i.e.,
K2 -
m > <—°° — 1>
un
a

50

Appendix B
Decoding when Erasures are Present

In this appendix, we briefly discuss the modifications necessary in the G.S(m)-algorithm if erasures
are present in the garbled codeword.

Suppose the codeword suffers e erasures, which for notational convenience we assume are in positions
n—e+1,---,n. Then the received word is (81, -, Bn—c,*, *, -+, *). In this case, the GS(m) decoder
constructs a polynomial with a zero of multiplicity m at each of the n—e points (a1, 81), -, (n—e, Bn—ec)-
It is then easy to show that the list of y-roots of Q(z,y) will contain every codeword that agrees with the
transmitted codeword in at least K,,(n — e, k) of the unerased positions. Hence, we have the following.

Theorem B-1. For an (n,k) RS code, the GS(m) decoder will correct any pattern of e erasures and
t errors, provided

and
t<tm(n—ek)

Conventionally, of course,

and

ol

Thus, for example, for the G.S(o0)-decoder, the “achievable pairs” are

Poo(n, k) 427 {(e,t) et 1}

n—e
versus the conventional
Po={(e;t):in—e—2t>k—1}

Sanity check:

A

(n—e—t)+t<(n_e_t)_t):(n—e—t)Z_tZ (n—e—1t)?

—e—2t) =
(n €) n—e n—e - n—e

51

The relative sizes of these regions is illustrated in Fig. B-1.

Example B-1. For the (32,8) RS code over GF(32), if the codeword suffers e erasures, the following
table shows how many errors also can be corrected, if (1) conventional decoding; (2) a GS(3) decoder;
and (3) a GiS(c0) decoder is used.

e: 001 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24
tp:1211111010 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 O

t3: 151514 131212111010 9 8 8 7 6 6 5 4 4 3 3 2 1 1 0 O
tgsg: 1716 1514 13 13 1211 1110 9 8 8 7 6 6 5 5 4 3 2 2 1 1 0
n_(vn)1/2 T 1T 11 ||||||||||| ||||||||||||||I|||_|
(n- k) 12k
Lo v v b b b b LS
n-k

e

Fig. B-1. Combined erasure, e, and error, t, correction,
conventional and GS ().

52

Appendix C
A GS-Type Conventional RS Decoding Algorithm

If K6tter’s interpolation algorithm is specialized to m = 1 and L = 1, the result is an algorithm that
can be used as an RS decoding algorithm in the conventional sense. (A similar observation was made in
[21].) In the following pseudocode, (51, -, 5,) is a noisy codeword from an (n, k) RS code consisting of
all codewords of the form (f(a1), - f(aw)), where (ay,...,) is a list of n distinct elements of F, and
f(x) € Fy_1[z]. This algorithm involves no syndrome calculation or error value/location evaluation.

/* An O(n?) GS-like RS Decoding Algorithm */

BEGIN (Given {(a,3;)}i,(1,k — 1)-revlex order)

L go(z,y) :==1;60 = 0.
2. gilzy) =y 0 =k—1
3. FORZi=1tonDO
4. FOR j = 0 to 1 DO
5. Aj = gi(aq, Bi) /* jth discrepancy */
6. J ={j:A; #0}
7. If J 4§
8. J* :=argmin {g; : j € J}
9. [=g A=Ay
10. FOR j € J DO
11. IF (j # J%)
12. 9i =Ag; — A f
13. ELSE IF (j = Jx)
14. gj = (x — i)y,
15. 0; :=0;+1 /* (1,k—1)-deg increases by 1 */
16, Q(ay) = miny{g;(,9)} = Pi(w)y — Polw)
17. f(z) rem r(z) := Py(z) = Pi(x)
18. IFr(z) ==0and deg f(z) <k -1
19. Print “transmitted codeword was f(x)”
20. ELSE
21. Print “uncorrectable error pattern”

END

53

Example C-1. Consider a (5,2) RS code over F
correcting 1 error. Suppose we are given

GF(5), which is conventionally capable of

i: 1 2 3 4 5
a: 01 2 3 4
Gi: 1 3 3 2 4

(Here D(2x + 1, 3) = 1.) The following table shows how the algorithm proceeds.

i (0, Bs) 90(z,) 91(z,y)

0 — 1 Y

1 (0,1) © y+4

2 (1,3) z2 + 4z y+3x+4

3 (2,3) 3y+3z2+z+2 y(x +3) + (322 + 32+ 2)
4 (3,2) y(3z + 1) + (323 + 222 + 4z + 4) y(z + 3) + (322 + 3z + 2)
5 (4,4) y(3x2 +4dx + 1) + (3z* + 22 + 3z + 4) y(x 4+ 3) + (322 4+ 3z 4+ 2)

Hence, Q(z,y) = g1(z,y) = y(z +3) — (22% + 22 + 3), f(x) =22+ 1, r(z) = 0, so the decoder’s output is
2z 4+ 1, which indeed produces a codeword that differs from the received word in only one position, viz.,
i = 3. (Interestingly, if go(z,y) is taken instead, f(x) = 422 + 3x + 1 results, with D(f, 3) = 2.)

Example C-2. Consider the same (5,2) RS code over F' = GF'(5), but now we are given

i
(673

Bi -

= O =
w = N
w N W
W W
= s Ot

(Here D(2x + 1, 3) = 2.) The following table shows how the algorithm proceeds.

i (ai,ﬂi) go(z,y) g1(z,y)

0 — 1 y

1 (0,1) T y+4

2 (1,3) z? + 4z y+3z+4

3 (2,3) 3y+3z2+x+2 y(z +3) + (322 + 3z + 2)
4 (3,3) y(3z + 1) + (323 + 222 + 4z + 4) zy + 2z

5 (4,4) y(z +4) + (223 + 322 + 4z + 1) y(x? 4+) + (222 + 2x)

Hence, Q(z,y) = go(z,y) = y(x +4) — (32 + 222 + x + 4), f(x) = 32?2 + 1, r(z) = 0, so the decoder’s
output is “uncorrectable error pattern,” even though D(f,3) = 1. (Interestingly, if Q(x,y) is chosen to
be g1(x,y) instead, f(x) = 3, which has D(f,3) = 2, is output.)

54

A mathematical discussion of the algorithm’s behavior follows. We introduce the notation

Admk%:{n;kW—l

and
K(f;B) = {i: f(ei) = Bi}| (agreements)

D(f;8) = |{i: f(ou) # Bi}] (disagreements)

Lemma C-1.
Ao(n, k) + Ai(n,k)=n—1 (C-1)

k—1< Ao(n,k) — Ay(n, k) < k (C-2)

Lemma C-2. y — f(z) divides Q(z,y) = Pi(x)y — Po(x) if and only if P;(z) | Py(x), in which case
f(@) = Po(x)/ Pr(z).

Theorem C-1. This algorithm will return a polynomial Q(x,y) = yP1(x) — Po(z) with deg Py(x) < Ag
and deg Py (x) < Aj.

Proof. The polynomial Q(x,y) must satisfy the n constraints Q(«;,58;) =0, for ¢ = 1,---,n. Thus,

Q(z,y) will be a linear combination of the first n + 1 monomials from F[z,y] in (1, k — 1)-revlex order.
By Eq. (C-1), there are Ag + A1 + 2 = n + 1 monomials in the sets

and
{y7 ZyY, - - 7xA1y}

and these are the first n 4+ 1 monomials from F[z,y™M] in (1,k — 1)-revlex order, since z20F! > 281y by
the left side of Eq. (C-2) and 211y > 20 by the right side of Eq. (C-2). a

Theorem C-2. The algorithm returns f(x) if and only if f(x) € Fy_1[z] and D(f;5) < A1(n, k) =
|(n—k)/2]. If there is no such f(x), it prints “uncorrectable error pattern.”

Proof. (Only if.) Suppose that the algorithm returns f(z), i.e., f(x) € Fy_1[z] and y — f(x) divides

Q(z,y). By Lemma C-2, y — f(z) divides Q(z,y) = Pi(z)y — Py(x) if and only if f(z) = Py(z)/Pi(z).
This algorithm, as a special case of Kotter’s algorithm, guarantees that

55

Qoi, Bi) = Pi(y)Bi — Po(e;) =0 fori=1,---,n

Thus, if P;(a;) # 0, we have

Bi= 5 = flay) (C-3)

But since deg Pi(z) < Ay, there can be at most A; exceptions to Eq. (C-3), i.e., D(f;8) < Ay =

L(n = k)/2].

(If.) Suppose f(z) € Fx_1]z] and D(f;8) < [(n — k)/2]. By Theorem C-1 and Eq. (C-2),
degl,k}—l Q(.’E, y) § max (Al + (k/’ — 1), AQ) S AO

It follows from Theorem 7 that, if the score of f(z) exceeds Ag, then y — f(x) divides Q(z,y). But in
this case, the score of f(z) is

S1(f) = K(f: 8) =n— D(f; B)

so that y — f(z) divides Q(z,y) provided D(f;3) <n— Ag— 1. But

n_Ao_lzn_{ﬁgyﬁw:{m;kw

56

Appendix D
The Average Size of the List

Technically, the GS decoding algorithm is a “list” decoder, i.e., the decoder’s output is a list of
candidate codewords. In this appendix, we will show that, for the GS decoder, the list is unlikely to
contain more than one codeword. (The only previous work on this topic we are aware of is [19], which
presents an upper bound on the probability of having more than one codeword on the list. However, the
expression obtained is difficult to evaluate and appears to provide little insight.)

We have seen that the GS(m) decoding algorithm returns a list that is guaranteed to include all
codewords within distance t,, of the received word. Let us denote by L the number of such codewords;
L is a random variable that depends on the channel noise. We have seen that in the worst case L cannot
exceed L,,, defined in Eqs. (42) and (45) and closely bounded above by

1 n
Lm<<m+§) ﬁ

But what about the average number of codewords on the list? If the number of channel errors is ¢,
or less, the causal codeword will certainly be on the list. Let us take the presence of the causal codeword
for granted and consider the average number of noncausal codewords on the list. To do this, we need to
explore the combinatorics of RS codes a bit.

Thus, let C be an (n,k) RS code over GF(q), with redundancy » = n — k and minimum distance
d=mn—k+ 1. Let C* be the set of nonzero codewords, and let E be an arbitrary vector of length n over
GF(q). We make the following definitions:

[= [{Cec:|E-C| <) (D-1)

D(u,t)= Y f(E,t) (D-2)

|E|l=u

The interpretation is this. If (0, --,0) is the transmitted codeword, and E is received, f(F,t) represents
the number of nonzero codewords with distance ¢ or less from E. If f(E,t) = m, we say that F is m-tuply
falsely decodable. By linearity, if C' is the transmitted codeword, and F is the error pattern, f(FE,t) is
also the number of noncausal codewords at distance <t from the received word R = C'+ E. Thus, D(u,t)
is the total number of falsely decodable words of weight u, where an m-tuply falsely decodable word is
counted m times.

Theorem D-1. Consider a bounded distance decoder with decoding radius t. If |E| = u, then the
average number of noncausal codewords (averaged over all error patterns of weight u) in the decoding
sphere is given by

(D-3)

If P(u,t) denotes the probability that there exists at least one noncausal codeword within distance t of the
received word R,

57

P(u,t) < L(u,t) for all u and t (D-4)

P(u,t) = L(u,t) if 2t <r (D-5)

Proof. If E is the error pattern, then the number of noncausal codewords at distance ¢ or less from R
is, by definition, f(E,t). Since there are ()(q — 1)" error patterns of weight u, the average of f(E,t)
over all error patterns of weight u is

> EiEl=u [(E,1) D(u,t)

@=-n* ()a-1e

which proves Eq. (D-3). To prove Egs. (D-4) and (D-5), we note that if X is a random variable assuming
nonnegative integer values, and p; = Pr{X =i}, then

Pr{X >0} =Y p; <Y ipi = B(X)

i>1 i>1

with equality iff Pr{X > 2} = 0. If X represents the number of noncausal codewords within distance ¢
of R, the above inequality is equivalent to Eq. (D-4). To prove Eq. (D-5), we note that, if 2¢ < r, it is
impossible for a sphere of radius ¢ to contain two or more codewords, i.e., Pr{X > 2} = 0. a

Theorem D-1 tells that, to compute the average number of noncausal codewords within distance ¢
of R, it is enough to know the numbers D(u,t). Fortunately, several previous authors have considered
these numbers.'® Of course we know from prehistory that

D(u,t)=0 ifu+t<r=d-1 (D-6)

Less trivially, in 1978 Berlekamp and Ramsey [3] proved that
— 1 n—u .
L(u,t)i() ifut+t=r+1=d (D-7)

(=Dt \ ¢

In 1986, McEliece and Swanson [17] proved that for all (u,t),

Tt < Tatn) = e D <q—1>8{ - () (Sﬁ‘w)} (D-5)

< To(ut) = — L | Z 1) (n) (D-9)

15 The articles [3], [17], and [5] predate GS and ostensibly apply only to the “conventional” case t < r/2. However, a close
inspection of the proofs shows that the formulas for D(u,t) are valid even if ¢t > r/2, provided the definition of D(u,t) is
modified to include multiple erroneous decodings.

58

< To(0) = = o0~ 1°(7) (0-10)
=0

S

Finally, in 1989 Cheung [5] gave an exact closed-from expression for D(u,t) that is suitable for nu-
merical calculations but is too complex to reproduce here. However, numerical experimentation with
Cheung’s formula indicates that the maximum value of L(u,t), for u > r 4+ 1 — ¢, is just a hair’s breadth
larger than

2= T = 23 (1) (D-11)

which is the average number of codewords in a randomly selected Hamming sphere of radius .

Example D-1. (Cf. Example 4). Let (n,k) = (31,15) with ¢ = 32. Then ¢, = 8 and tgg = 10. If
we take m = 3, t,, = 9, and use Cheung’s formula [5] to find the exact values of L(u), and Egs. (D-8)
and (D-9), to get the more easily computed upper bounds L (u,t) and Ly (u,t), we obtain the following
table. (By way of comparison, L(9) = 0.000446534, which is indeed just a hair’s breadth smaller than
the maximum value of L(u,9), viz., L(15,9) = 0.000446693.)

U L(u,9) L1(u,9) La(u,9) Lo(9)

<7 0 0 0 0.000742107
0.000029702 0.000029702 0.000732758 0.000742107
0.000110353 0.000123059 0.000742007 0.000742107

10 0.000223257 0.000276441 0.000742106 0.000742107

11 0.000328446 0.000447558 0.000742107 0.000742107

12 0.000398966 0.000589304 0.000742107 0.000742107

13 0.000433257 0.000679193 0.000742107 0.000742107

14 0.000444652 0.000722651 0.000742107 0.000742107

15 0.000446693 0.000738051 0.000742107 0.000742107

16 0.000446618 0.000741676 0.000742107 0.000742107

17 0.000446524 0.000742107 0.000742107 0.000742107

! i 1 1
0.000446534 0.000742107 0.000742107 0.000742107

If we assume the decoder declares “success” if the list contains exactly one codeword, and failure otherwise,
then

Pr{decoder failure| < 7 errors} = 0
Pr{decoder failure|8 errors} = 0.000029702
Pr{decoder failure|9 errors} = 0.000110353

Pr{decoder failure| > 10 errors} =1

59

whereas a (conventional ¢ = 8) decoder for this code would have
Pr{decoder failure| < 7 errors} = 0
Pr{decoder failure|8 errors} = 0
Pr{decoder failure|9 errors} = 1
Pr{decoder failure| > 10 errors} =1

In view of these numbers, it is indeed fair to say that the G.S(3) decoding algorithm can correct 9 errors.

60

