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ICER-3D: A Progressive Wavelet-Based
Compressor for Hyperspectral

Images
A. Kiely,1 M. Klimesh,1 H. Xie,1 and N. Aranki2

ICER-3D is a progressive, wavelet-based compressor for hyperspectral images.
ICER-3D is derived from the ICER image compressor. ICER-3D can provide loss-
less and lossy compression, and incorporates an error-containment scheme to limit
the effects of data loss during transmission. The three-dimensional wavelet decom-
position structure used by ICER-3D exploits correlations in all three dimensions
of hyperspectral data sets, while facilitating elimination of spectral ringing arti-
facts. Correlation is further exploited by a context modeler that effectively exploits
spectral dependencies in the wavelet-transformed hyperspectral data. Performance
results illustrating the benefits of these features are presented.

I. Introduction

Hyperspectral images are three-dimensional (3-D) data sets, where two of the dimensions are spatial
and the third is spectral. A hyperspectral image can be regarded as a stack of individual images of
the same spatial scene, with each such image representing the scene viewed in a narrow portion of the
electromagnetic spectrum. These individual images are referred to as spectral bands. Hyperspectral
images typically consist of more than 200 spectral bands; the voluminous amounts of data comprising
hyperspectral images make them appealing candidates for data compression.

Exploiting dependencies in all three dimensions of hyperspectral data sets promises substantially more
effective compression than two-dimensional (2-D) approaches such as applying conventional image com-
pression to each spectral band independently. With this in mind, we have developed ICER-3D, an
extension of the ICER image compressor to hyperspectral images. ICER is a wavelet-based 2-D image
compressor; see [1] for a description. ICER is being used onboard the Mars Exploration Rovers for com-
pression of a large majority of the images returned [2]. ICER-3D uses a 3-D wavelet decomposition to
provide decorrelation in the spectral dimension as well as both spatial dimensions. Other investigations
of 3-D wavelet-based compression of hyperspectral imagery include [3–5].

ICER-3D inherits much of its design, and hence some of its features, from ICER. ICER-3D com-
pression is progressive, which means that compressed information is organized so that as more of the
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compressed data stream is received, reconstructions with successively higher overall image quality can be
reproduced. A bitstream with this property is often referred to as embedded. ICER-3D uses reversible
wavelet transforms, so it can provide lossless or lossy compression. Truncating an embedded data stream
by increasing amounts produces a graceful degradation in the reconstructed image quality. Thus, pro-
gressive compression provides a simple and effective method of meeting a constraint on compressed data
volume.

To limit the effects of data loss during transmission, the wavelet-transformed data are partitioned into
a user-selectable number of segments, each roughly corresponding to a rectangular spatial region of the
scene. Each segment is compressed independently so that if data pertaining to a segment are lost or
corrupted, the other segments are unaffected. Furthermore, because compression is progressive within
each segment, when data loss does occur, any received data for the affected segment that precedes the
lost portion will allow a lower fidelity reconstruction of that segment.

In Section II we briefly describe the ICER compressor and give an overview of some of the similarities
and differences between ICER and ICER-3D. ICER-3D has two key features that distinguish it from a
straightforward extension of ICER. First, ICER-3D uses a 3-D wavelet decomposition that includes addi-
tional spatial transform stages compared to a 3-D Mallat decomposition; this is described in Section III.
Second, ICER-3D uses a bit-plane coding and context modeling procedure that emphasizes spectral
(rather than spatial) dependencies in the wavelet-transformed data; this is described in Section IV. In
Section V we present performance results that illustrate the benefit to compression effectiveness provided
by these two key features. We assume that the reader has a general familiarity with wavelet-based image
compression for (2-D) images, and we generally omit the details of ICER-3D compression in areas where
it does not differ from ICER.

The examples presented in this article use Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
data [6]. The AVIRIS hyperspectral images referred to in this article have a width of 614 pixels and
include 224 spectral bands covering wavelengths from 370 nm to 2500 nm. For most of our examples,
we use the first 512-line scene of the calibrated 1997 Moffett Field radiance data set.3 In this article, we
number bands starting from 1 (rather than 0).

II. ICER and ICER-3D

A. ICER Overview

We start with a brief overview of some relevant concepts from the basic (2-D) ICER.

In ICER, multiple stages of a 2-D wavelet transform are applied to the image. The first stage is
applied to the whole image, while subsequent stages are applied only to the (horizontally and vertically)
low-pass subband from the previous stage. This results in the pyramidal decomposition first suggested by
Mallat [7] and currently in common use. The resulting subbands include one small low-pass subband and
several subbands that are high-pass in at least one dimension. A three-level 2-D wavelet decomposition
of an image is shown in Fig. 1.

ICER’s error-containment segments are defined in the transform domain, and each segment approxi-
mately corresponds to a rectangular region of the original image. Figure 2 illustrates this correspondence.
The partitioning into segments is performed automatically based on the image dimensions and number
of segments requested; this operation has no relation to the concept of segmentation for distinguishing
objects or regions in an image. Segments are analogous to “precincts” in JPEG2000 [8].

3 The Moffett Field data set is available from the AVIRIS web site, http://aviris.jpl.nasa.gov.
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(a) (b)

Fig. 1.  Example of a three-level, 2-D wavelet decomposition:  (a) the original image, 
spectral band 41 (wavelength 740 nm) from the Moffett Field scene and (b) the result of 
the wavelet decomposition.  In (b), in all subbands except the low-pass subband, 
absolute values are shown, contrast-enhanced by a factor of 3 relative to the low-pass 
subband.

(a) (b)

Fig. 2.  The image of Fig. 1 divided into three error-containment segments, each tinted a 
different color:  (a) the regions with hard boundaries in the transform domain and         
(b) the resulting regions with soft boundaries in the original image.

To achieve progressive compression, discrete wavelet transform (DWT) coefficients are converted to
sign-magnitude form and encoded one bit plane at a time starting with the most-significant magnitude
bit plane. (A bit plane is formed by taking the ith most-significant magnitude bit of each coefficient
in a subband, for some i.) When the first ‘1’ bit of a coefficient is encoded, the sign bit is encoded
immediately afterward. The wavelet decomposition uses a reversible transform, so lossless compression is
achieved when all subband bit planes are coded. Correlation between adjacent coefficients in a subband
is exploited via predictive coding and context modeling.

B. ICER-3D Overview

We now give an overview of ICER-3D, along with some comparisons to ICER.

As previously mentioned, hyperspectral data have three dimensions, and ICER-3D uses a 3-D wavelet
decomposition. Rather than using a 3-D Mallat decomposition, which would be analogous to the
2-D Mallat decomposition used by ICER, a slightly different decomposition structure is used. Follow-
ing this wavelet decomposition, mean values are subtracted from spatial planes of spatially low-pass
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subbands. These steps are described in Section III, and a detailed discussion of the motivation behind
this approach is given in [9,10].

Error-containment segments in ICER-3D are defined spatially (in the wavelet transform domain). The
wavelet-transformed data are partitioned in much the same way as in ICER, except that in ICER-3D
the segments extend through all spectral bands. Error-containment segments in ICER and ICER-3D are
defined using the same rectangle partitioning algorithm; it is described in [1, Section V.D].

In ICER-3D, as in ICER, the trade-off between rate and distortion is controlled by two parameters,
one that limits the number of compressed bytes produced and another that limits the number of subband
bit planes encoded. The correspondence of this latter parameter to the set of bit planes that can be
encoded is described in Sections IV.A and IV.B.

Probability estimates used in the encoding process are derived via context modeling. Under context
modeling, a bit of a DWT coefficient to be encoded is classified into one of several contexts based on
previously encoded data. In ICER-3D, contexts are defined based on two neighboring coefficients in
the spectral dimension and no neighboring coefficients in the same spatial plane. This contrasts with
the context modeling scheme used by ICER, which makes use of previously encoded information from
spatially neighboring coefficients. The ICER-3D context modeler is described in Section IV.C.

III. Three-Dimensional Wavelet Decomposition

A. Decomposition Structure

When using 3-D wavelet transforms for hyperspectral image compression, systematic variations in
signal level of different spectral bands can cause the mean values of spatial planes of spatially low-pass
subbands to vary widely. Failing to account for this phenomenon can have detrimental effects on image
compression, including reduced effectiveness in compressing spatially low-pass subband data and biases
in some reconstructed spectral bands (“spectral ringing”) [9].

In ICER-3D these effects are mitigated by the choice of the wavelet decomposition structure used, and
by subtracting the mean value from each spatial plane of each spatially low-pass subband. This approach
virtually eliminates biases in reconstructed spectral bands and provides an improvement in subjective
reconstructed image quality. These benefits are described in more detail in [9]. Here we describe the
decomposition procedure used in ICER-3D.

In ICER-3D, the subband decomposition is extended from the 3-D Mallat decomposition so that
in stages of decomposition after the first, not only is the low-pass subband further decomposed, but
spatially low-pass, spectrally high-pass subbands are also further decomposed spatially. An illustration
of this subband decomposition is provided in Fig. 3. The decomposition can be alternately described as
follows: first, a 2-D Mallat decomposition with the desired number of levels is performed (spatially) on
every spectral band. Then, a single level of spectral decomposition is applied across the first-level spatial
subbands; a two-level one-dimensional Mallat decomposition is applied spectrally across the second-level
spatial subbands; and so on.4

This decomposition structure is motivated by the observation that, in a 3-D wavelet decomposition,
the spatially low-pass, spectrally high-pass subbands have spatial planes that look qualitatively simi-
lar to spatial planes in the low-pass subband (see [9]). This suggests using additional decompositions of
the spatially low-pass, spectrally high-pass spatial planes to improve compression effectiveness in the same

4 This alternate description does not produce exactly the same result, because the integer DWT is not quite linear due to
rounding operations. Another consequence of this nonlinearity is that the decoder should perform the inverse transform
operation in exactly the reverse order in which the corresponding forward transforms were performed.

4



2

0

3

9

4
8

22

15 10

16

26

1420

52529

1724 7

16

111827

30

23

28

x

λ

y

19

21
13

12

SPATIALLY
LOW-PASS
SUBBANDS

LOW-PASS
SUBBAND

Fig. 3.  The 3-D wavelet decomposition scheme used by ICER-3D, illustrated here with 
three levels of decomposition.  The x, y, and λ labels identify the horizontal, vertical, 
and spectral axes, respectively.  Each subband is labeled with an index using the 
subband numbering scheme described in the Appendix.

way that additional decompositions of the low-pass subband in a 2-D Mallat decomposition improve
compression effectiveness.

After the 3-D wavelet decomposition is performed, mean values are computed for and subtracted
from each spatial plane of each error-containment segment of each spatially low-pass subband,5 thus
compensating for the fact that such spatial planes often have mean values that are far from zero [9]. The
resulting data are converted to sign-magnitude form and compressed (see Section IV). The mean values
are encoded in the compressed bitstream and added back to the data at the appropriate decompression
step. The overhead incurred by encoding the mean values is only a few bits per spectral band per segment,
which is negligible because of the huge size of hyperspectral data sets.

Note that it is important to subtract the means after all stages of subband decomposition; otherwise,
if two adjacent error-containment segments have significantly different means, a sharp edge would appear
after subtracting the means, artificially increasing the high-frequency signal content in further stages of
spatial decomposition.

B. Dynamic Range of Wavelet-Transformed Data

In general, the range of possible output values from a reversible DWT can be larger than the range
of input values [11]; we refer to such an increase as dynamic range expansion. The amount of dynamic
range expansion can increase with multiple filtering operations. Dynamic range expansion can be an issue
because storage of wavelet-transformed samples may require binary words that are larger than those used
for the original samples. In particular, one must pay attention to the degree of dynamic range expansion

5 For simplicity of terminology, we use the term “DWT coefficient” to refer to both the coefficient value as well as the value
following the mean subtraction operation.
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if the wavelet decomposition is performed in-place, i.e., when memory locations originally used to store
image samples are subsequently used to store DWT coefficients. Dynamic range expansion is analyzed
for ICER in [1]. Here we extend the results to ICER-3D.

For the filters used in ICER and ICER-3D, low-pass filtering does not expand the dynamic range,
but high-pass filtering does. The dynamic range expansion following a single one-dimensional high-pass
filtering operation can be described (see [1]) by the approximation

hmax − hmin ≈ (xmax − xmin)γ

Here xmax and xmin denote the maximum and minimum possible values input to the DWT, and hmax

and hmin denote the maximum and minimum possible values output from the (one-dimensional) high-
pass filtering operation. As noted in [1], hmin ≈ −hmax. The constant γ is equal to the sum of the
absolute values of the filter taps for the linear filter that approximates the particular high-pass filter.
Thus, each additional stage of the high-pass filtering operation results in dynamic range expansion by
a (filter-dependent) factor γ, or log2 γ bits. Under the decomposition structure used by ICER-3D, each
subband is produced using at most one high-pass filtering operation in each of the three dimensions (x, y,
or λ), so the worst-case dynamic range expansion comes from three high-pass filtering operations. Table 1
shows the dynamic range expansion resulting from up to three high-pass filtering operations for the filters
used by ICER-3D.

The last column of Table 1 can be used to determine necessary binary word sizes to accommodate
dynamic range expansion for a given source bit depth, or conversely, to determine the restriction on source
bit depth for a given storage word size. For example, when using filter A, 16-bit words are sufficient to
store the coefficients produced by applying a 3-D decomposition to 12-bit data (such as uncalibrated
AVIRIS data). But the other filter choices may produce DWT coefficients that cannot be stored in 16-bit
words following 3-D wavelet decomposition.

If one is unwilling or unable to provide words of the requisite size for the transform coefficients,
there are some possible ways to relax the requirements, with minor costs. For example, quantization
of DWT output could be performed at intermediate stages of the decomposition to reduce the dynamic
range as needed. This method sacrifices the ability to perform lossless compression, and it may slightly
decrease compression effectiveness at high rates, but it may be quite practical when lossless or near-lossless
compression is not needed.

Table 1. Approximate dynamic range expansion following one, two,
or three high-pass filtering operations.

One high-pass Two high-pass Three high-pass
filter operation filter operations filter operations

Filter

γ log2 γ, bits γ2 log2 γ2, bits γ3 log2 γ3, bits

A 5/2 1.32 25/4 2.64 125/8 3.97

B 11/4 1.46 121/16 2.92 1331/64 4.38

C 25/8 1.64 625/64 3.29 15625/512 4.93

D 41/16 1.36 1681/256 2.72 68921/4096 4.07

E 47/16 1.55 2209/256 3.11 103823/4096 4.66

F 51/16 1.67 2601/256 3.34 132651/4096 5.02

Q 11/4 1.46 121/16 2.92 1331/64 4.38
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For all examples in this article, wavelet transforms are performed using filter A, which is the integer 2/6
DWT filter pair described in [1,12,13].

IV. Bit-Plane Coding

Following the wavelet decomposition and mean subtraction procedure described in Section III.A, each
DWT coefficient is converted to sign-magnitude form. Magnitude bit planes of subbands are compressed
one at a time; when the first ‘1’ magnitude bit of a coefficient is encoded, the sign bit is encoded
immediately afterward. Compressed bit planes of different subbands are interleaved so that earlier bit
planes tend to yield larger improvements in reconstructed image quality per compressed bit.

Subband bit planes are compressed in order of decreasing priority value according to the simple priority
assignment scheme described below. Bit planes having the same priority value (which are necessarily from
different subbands) are compressed in order of decreasing subband index, using the index assignment
described in the Appendix.

A. Assigning Priority Values to Subband Bit Planes

For each subband, we can determine a weight that indicates the approximate relative effect, per coeffi-
cient of the subband, on mean-squared error (MSE) distortion in the reconstructed image. These weights
determine weights of subband bit planes, thereby indicating relative subband bit-plane priorities [1,13].
A subband weight can be expressed in terms of the number of stages of high-pass and low-pass filtering
operations, denoted H and L, respectively, used to form a subband. For example, consider subband 21
in Fig. 3. To form this subband, three stages of low-pass filtering are applied in the vertical dimension;
two stages of low-pass filtering followed by one stage of high-pass filtering are applied in the horizontal
dimension; and one stage each of low-pass filtering and high-pass filtering are applied in the spectral
dimension. Thus, H = 2 and L = 6 for this subband.

The weight w assigned to bit plane b of a subband depends on H and L:

w = 2b ·
(√

2
)L−H =

(√
2

)2b+L−H (1)

Here, bit planes in a subband are indexed starting with b = 0 for the least-significant bit. This weight
scheme amounts to a 3-D extension of the weight scheme described in [1] for the 2-D case.

Any monotonic function of the weight in Eq. (1) can be used to determine the relative importance of
subband bit planes, so rather than keeping track of real-valued weights given by Eq. (1), we define integer
“priority” values p of subband bit planes, given by

p = 3 + log√2(w) = 2b + L − H + 3 (2)

This definition produces a minimum priority value of 0, since H ≤ 3 and L ≥ 0 for all subbands.

As an example, since H = 2 and L = 6 for subband 21, bit plane b of this subband is assigned priority
value

p = 2b + 7

Thus, all bit planes of subband 21 have odd priority value, with a minimum value of 7. For subband 3,
H = 2 and L = 1, so bit plane b of this subband has priority
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p = 2b + 2

For this subband, all bit planes have even priority value, with a minimum value of 2.

In general, since L and H are fixed for a given subband, all of the bit planes in a subband have
even-valued priority, or all have odd-valued priority. As illustrated in Fig. 4, the DWT coefficients with
even-valued bit-plane priorities significantly outnumber those with odd-valued priorities.

Additionally, a consequence of the priority definition in Eq. (2) is that only subband 0 has a bit plane
with priority 0, and no subbands have bit planes with priority 1. The histogram of Fig. 5 shows the
fraction of DWT coefficients that have bits with a given priority value.

x

λ

y

Fig. 4.  Bit planes in the dark subbands have only odd-
valued priorities.  Bit planes in the light subbands have 
only even-valued priorities.
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B. Controlling Image Quality and Amount of Compression

ICER-3D provides two parameters that together are the primary means of controlling image quality
and amount of compression: a byte quota, indicating a rough maximum number of compressed bytes to
produce, and an integer minimum loss parameter q that tells the compressor to stop when all subband
bit planes having priority value q have been encoded. (Note that a lower value of q corresponds to a
higher quality.) ICER-3D stops producing compressed bytes once the quality goal (as expressed by the
minimum loss value) or byte quota is met, whichever comes first. Setting the minimum loss parameter
to zero will result in compression limited only by the byte quota, and thus compression is lossless when
the byte quota is sufficiently large.

This is the same strategy for controlling the compressed data volume and image quality as that used in
ICER. In both compressors, the minimum loss parameter controls the minimum amount of quantization
performed on the DWT coefficients. Each unit increment corresponds to a set of subband bit planes with
the next priority value. In general, a minimum loss value of q in ICER is very roughly equivalent to a
minimum loss value of 2q in ICER-3D, because successive bit planes of a subband have priority values
that differ by 1 in ICER and 2 in ICER-3D. This equivalence is approximate because the coefficients
do not have corresponding meanings (2-D versus 3-D decomposition) and the proportions of bits with
equivalent priority values do not match.

A consequence of the imbalance between the fraction of bits with even-valued and odd-valued priorities,
as described in Section IV.A, is that if we plot rate-distortion points obtained by compressing to each
value of the minimum loss parameter, the rate-distortion points cluster in pairs, as illustrated in Fig. 6.
This phenomenon does not occur in ICER, where the points are more uniformly spaced.

C. Context Modeling

The general strategy used by ICER-3D for encoding subband bit planes is as follows. Before encoding
a bit, the encoder calculates an estimate of the probability that the bit is a zero. This probability-of-zero
estimate relies only on previously encoded information from the same segment. The bit and its probability-
of-zero estimate are sent to the entropy coder, which compresses the sequence of bits it receives. This
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strategy is the same as that used by ICER. For entropy coding, ICER-3D uses an interleaved entropy
coder; it is the same as that used by ICER, as described in [1, Section IV].

Probability estimates are computed using a technique known as context modeling. With this technique,
a bit to be encoded is first classified into one of several contexts based on the values of previously encoded
bits. The intent is to define contexts that divide bits with different probability-of-zero statistics into
different classes for which separate statistics are gathered. The compressor can then estimate these
probabilities of zero reasonably well from the bits it encounters in the contexts. Within this framework,
a simple adaptive procedure, also used by ICER and described in [1, Section III.B], is used to estimate
probabilities.

ICER-3D employs a one-dimensional spectral context model with context definitions that rely on two
neighbors in the spectral direction but no neighbors in the same spatial plane. Note that ICER uses a
two-dimensional context model relying on eight (spatial) neighbors.

Encoding of an error-containment segment of a subband bit plane proceeds one spatial plane at a time
and in raster scan order within a spatial plane. This encoding order means that a given context will
often be assigned many consecutive bits from the same spatial plane, so probability estimation for the
context can adapt to the dependency appropriate for the spatial plane being encoded without needing to
keep separate statistics for each spatial plane. (For example, when encoding sign bits, the statistics will
automatically adapt to exploit both positive and negative correlations between adjacent spatial planes.)
In our experiments, maintaining separate context statistics for each spatial plane in a subband segment
made little difference in compression effectiveness, but presumably this would not be the case if the coding
order were changed.

During the encoding process, ICER-3D maintains a classification of DWT coefficients into categories.
There are four categories, numbered 0–3. A coefficient’s category initially is 0 and remains so as long as
the magnitude bits encoded for the coefficient are all zeros; after the first ‘1’ bit from the coefficient is
encoded, the coefficient’s category becomes 1; when the next magnitude bit from the coefficient is encoded,
its category becomes 2; and, finally, when one more magnitude bit from the coefficient is encoded, its
category becomes 3 and remains 3 permanently.

ICER-3D uses 19 contexts to classify bits to be encoded that are likely to be compressible. Each context
is identified by a label; e.g., we use 1-a through 1-c to identify contexts for bits of DWT coefficients in
category 1. Table 2 summarizes the number of contexts used in ICER-3D and ICER for each bit type.
The context of a bit is determined using the category of the DWT coefficient containing the bit and the
category and signs of the two neighboring coefficients in the spectral dimension. Let C− and C+ denote
the categories of the neighbors in the previous spatial plane and the next plane, respectively. If one of
these coefficients is not available because the coefficient being encoded is in the first or last spatial plane
of the subband, the missing coefficients are treated as being in category 0 (i.e., C− = 0 or C+ = 0).

Table 2. Summary of ICER-3D and ICER contexts.

Bit type ICER-3D ICER

Category 0 9 contexts 9 contexts

Category 1 3 contexts 2 contexts

Category 2 2 contexts 1 context

Category 3 No compression No compression

Sign bits 5 contexts 5 contexts

Total 19 contexts 17 contexts
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A bit to be encoded from a coefficient in category 0 is classified into one of nine contexts according to
Table 3. Further partitioning of contexts based on signs of the spectral neighbors provided no improvement
in our experiments. In fact, experiments suggest that contexts 0-g to 0-i (i.e., contexts for which C+ ≥ 2)
could be sent uncoded without having much impact on compression effectiveness.

Tables 4 and 5 indicate how contexts are assigned to bits of coefficients in categories 1 and 2. We tried
further splitting the category 2 contexts based on the value of the preceding bit in the current coefficient,
but this made little difference. Bits of coefficients in category 3 are empirically nearly incompressible;
that is, estimates of these bits’ probabilities of zero tend to be very close to 1/2. Therefore, these bits
are left uncoded in the compressor’s output.

Sign bits are not encoded directly; rather, the context modeler first predicts the sign bit and then
encodes an “agreement” bit that is the exclusive-or of the sign bit and its predicted value. The agreement-
bit statistics associated with a sign context are used to estimate a probability of zero for future agreement
bits in the context in exactly the same manner as magnitude bits in magnitude contexts.

We use S− and S+ to denote the sign bits of the coefficients in the same spatial location in the previous
spatial plane and the next plane, respectively, within the subband. We use the symbols +, −, or 0 to
indicate whether the sign bit of the corresponding DWT coefficient is positive, negative, or not yet known.
Sign-bit predictions and contexts are assigned according to Table 6.

Table 3. Contexts for bits of DWT coefficients
in category 0.

C+ = 0 C+ = 1 C+ ≥ 2

C− = 0 0-a 0-d 0-g

C− = 1 0-b 0-e 0-h

C− ≥ 2 0-c 0-f 0-i

Table 4. Contexts for bits of DWT coefficients
in category 1.

C+ = 0 C+ = 1 C+ ≥ 2

C− < 2 1-a 1-a 1-a

C− ≥ 2 1-a 1-b 1-c

Table 5. Contexts for bits of DWT coefficients
in category 2.

C+ < 2 C+ ≥ 2

C− < 2 2-a 2-a

C− ≥ 2 2-a 2-b
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no compression—i.e., sign bits are not well-predicted under the spatial context model. The performance
improves noticeably for the spectral context model, suggesting that the spectral context model does a
reasonably good job of exploiting strong correlations between adjacent spatial planes of subbands. In
our experiments, we observed that the spectral context model for sign bits provides a large improvement
over the spatial model for subbands that are spectrally low-pass, and a small improvement in the other
subbands.

Figure 8 illustrates the effect on rate-distortion performance as we incrementally convert from a spatial
to a spectral context model for the different types of bits that are compressed. Figure 9 illustrates this
same effect in terms of the difference in rate achieved. The improvement is significant for sign bits and
bits in category 0, and small for bits in categories 1 and 2. In fact, there may be some merit to an
implementation in which one sends bits in categories 1 and 2 without compression as a complexity-saving
measure; Fig. 10 illustrates the impact that this would have on compression effectiveness. The relatively
poor compression performance on bits in categories 1 and 2 is consistent with the conventional wisdom
that magnitude bits beyond the first ‘1’ bit in a DWT coefficient are difficult to predict.

V. Results

A. Lossless Compression

Table 7 shows the lossless compression performance of ICER-3D on five 1997 calibrated AVIRIS
radiance data sets.6 For comparison, the table also shows results for the “fast lossless” compressor
from [14], the Rice compressor used in the Universal Source Encoder for Space (USES) chip using the
multispectral predictor option mentioned in [15], ICER applied independently to individual spatial planes
or spatial–spectral planes, and the JPEG-LS image compressor [16] applied independently to individual
spatial planes. More extensive lossless hyperspectral compression results for several compressors, including
ICER-3D, are available in [14].
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Fig. 10.  Rate-distortion results for Moffett Field, scene 1, using            
(a) ICER-3D (spectral context model for all bits that are compressed) 
and (b) the spectral context model for sign bits and category 0, but 
including bits in categories 1 and 2 without compression.

6 Available from the AVIRIS web site, http://aviris.jpl.nasa.gov
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Table 7. Lossless compression results (rate in bits/sample) for calibrated 1997 AVIRIS radiance datasets.
Data for JPEG-LS, Rice/USES, and the “fast lossless” compressor are taken from [14].

Fast Rice/USES ICER ICER JPEG-LS
Dataset ICER-3D

lossless multispectral spatial–spectral spatial (2-D)

Cuprite 5.21 4.95 6.04 6.13 6.95 7.24

Jasper Ridge 5.42 5.04 6.17 6.24 7.60 7.78

Low altitude 5.63 5.34 6.47 6.41 7.36 7.66

Lunar Lake 5.16 4.97 5.99 6.03 6.79 6.97

Moffett Field 5.33 5.07 6.13 6.11 7.22 7.46

Average 5.35 5.07 6.16 6.18 7.19 7.42

The results of Table 7 indicate that ICER-3D gives more effective lossless compression than simple
two-dimensional approaches or the USES multispectral compressor. But ICER-3D is outperformed by
the much simpler fast lossless compressor of [14], which would seem to be a preferable compressor when
lossless compression is the only concern. However, it could be sensible to use ICER-3D for lossless
compression in an application where it is already required to be present to perform lossy compression.

B. Lossy Compression

Figures 11 and 12 show the rate-distortion performance obtained for two AVIRIS scenes. Details from
false-color images produced from the reconstructed scenes after compression to 0.1 and 0.25 bits/sample
are shown in Figs. 13 and 14, respectively. These images were produced by mapping band 139 to red,
89 to green, and 18 to blue. For all cases, compression was performed using three stages of wavelet
decomposition and four error-containment segments.

In each of these figures, result (a) is obtained by applying ICER independently to individual spectral
bands, and result (b) is obtained by a straightforward 3-D extension of ICER, specifically, a compressor
that uses a 3-D Mallat decomposition and spatial context models. Each result (c) and (d) illustrates the
benefit provided by the two key features that distinguish ICER-3D from this straightforward extension:
(c) is produced using the modified decomposition and mean subtraction technique combined with the
spatial context models, and (d) is obtained when, in addition, the spatial context models are replaced
with the spectral models, so that the compressor used is the full ICER-3D.

As an example of the increase in compression effectiveness that can be obtained by exploiting
3-D structure in hyperspectral data, consider the rate-distortion performance shown in Fig. 11 for
the Moffett Field scene. To obtain the MSE distortion produced by ICER-3D at 0.25 bits/sample re-
quires about 1.15 bits/sample using ICER applied independently to individual spectral bands, and about
0.55 bits/sample using the 3-D Mallat decomposition combined with the spatial context modeler. Thus,
at distortion levels achieved near these rates, a straightforward 3-D extension of ICER yields roughly a
factor of 2 reduction in bit rate. ICER-3D attains about an additional factor of 2 reduction in bit rate
by using the modified decomposition and mean subtraction combined with the spectral context modeler.
Similar results hold for the Cuprite scene, as shown in Fig. 12.
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Fig. 11.  Rate-distortion results for Moffett Field, scene 1, using           
(a) ICER applied independently to individual bands, (b) 3-D Mallat 
decomposition along with the spatial context models, (c) modified 
decomposition and mean subtraction with spatial context models, and 
(d) ICER-3D.
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Fig. 12.  Rate-distortion results for Cuprite, scene 1, using (a) ICER 
applied independently to individual bands, (b) 3-D Mallat decomposition 
along with the spatial context models, (c) modified decomposition and 
mean subtraction with spatial context models, and (d) ICER-3D.
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Fig. 13.  Details from false-color images produced from the Moffett Field scene 
compressed using (a) ICER applied independently to individual bands, (b) a 3-D Mallat 
decomposition combined with the spatial context models, (c) the modified decompo-
sition and mean subtraction technique combined with the spatial context models, and              
(d) ICER-3D.  The original image is shown in (e).  In each case, the entire hyperspectral 
scene was compressed to 0.1 bits/sample.
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VI. Hardware Implementation on a Reconfigurable Platform

Given the high data rates produced by hyperspectral imaging instruments and the huge data volumes
generated, as well as the fact that ICER-3D is moderately computationally intensive, some missions will
find it impractical to use a software implementation of ICER-3D. To address this issue, a hardware im-
plementation has been developed. This effort was led by the fourth author. ICER-3D and the compressor
implemented in hardware have some differences that are a result of some of the hardware development
predating ICER-3D as described here; we refer to the version implemented in hardware as ‘ICER-3D*.’

In ICER-3D* the wavelet decomposition is the three-level Mallat 3-D decomposition, but, as in
ICER-3D, mean values are subtracted from each spatial plane of spatially low-pass subbands. The
wavelet transform is performed using Filter A. Context modeling is performed using the spatial contexts.
A high priority for future work is migration of the new spectral context models to the hardware platform.

The ICER-3D* implementation is on a single Xilinx Virtex II Pro (XC2VP70) field programmable
gate array (FPGA) using a commercial board from The Dini Group. The implementation is an encoder
that includes efficient implementations of the main modules of ICER-3D*: the 3-D wavelet transform, the
context modeler, and the entropy coder. It takes advantage of the embedded PowerPC Reduced Instruc-
tion Set Computer (RISC) core and the flexible on-chip bus architecture. The implementation features
efficient utilization of off-chip memory through internal buffering to minimize intensive input/output
(I/O) operations. The implementation is scalable in that it allows combining of multiple hardware cores
in parallel to provide higher throughput. The reconfigurability of the Xilinx Virtex II Pro FPGA allows
for the possibility of in situ reprogramming to meet different needs of a single mission without added
hardware.

The current prototype provides a throughput of 4.5 Msamples/s for lossless compression with a single
module implementation and a conservative clock speed of 50 MHz. The throughput is higher for lossy
compression, and would further increase substantially with a higher clock speed and/or use of parallel
modules. The power consumption of an implementation with two cores of each module used in parallel
is 6.5 W; this implementation utilizes about 60 percent of the chip resources. Further details of the
ICER-3D* hardware implementation will be presented in a future article.7

VII. Conclusion

The tremendous volume of hyperspectral data sets makes effective data compression an important
consideration for any space mission that includes a hyperspectral imager in its payload. Exploiting the
3-D structure of such data sets allows substantially more effective compression than 2-D compression
approaches.

ICER-3D exploits 3-D data dependencies in part by using a 3-D wavelet decomposition. The particular
decomposition used by ICER-3D includes additional spatial decomposition steps compared to a 3-D Mallat
decomposition. This modified decomposition provides benefits in the form of quantitatively improved
rate-distortion performance and in the elimination of spectral ringing artifacts.

ICER-3D takes advantage of the correlation properties of wavelet-transformed hyperspectral data by
using a context modeling procedure that emphasizes spectral (rather than spatial) dependencies in the
wavelet-transformed data. This provides a significant gain over the alternative spatial context modeler
considered.

ICER-3D also inherits some important features of ICER, including progressive compression, the ability
to perform lossless and lossy compression, and an effective error-containment scheme to limit the effects
of data loss on the deep-space channel.

7 N. Aranki, J. Namkung, and C. Villalpando, “Hyperspectral Data Compression on Reconfigurable Platforms,” in prepa-
ration for submittal to The Interplanetary Network Progress Report.
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Appendix

Subband Index Assignment

Each subband produced by the 3-D wavelet decomposition described in Section III.A is assigned an
index, with indices numbered starting from 0. The index assignment is used (along with the bit-plane
priority assignment described in Section IV.A) to determine the order in which different subband bit planes
are compressed. Figure 3 illustrates the subband indices assigned following three stages of decomposition.
In general, indices are assigned by sorting the subbands according to a subband-ordering function, which
we now describe.

The subband ordering function is defined by the following rules:

(1) A subband with a larger value of L − H has a higher index. This has the effect of giving
higher indices to subbands with higher priority bit planes. (Recall that we denote the
number of stages of high-pass and low-pass filtering used to form a subband by H and L,
respectively.)

(2) For two subbands with the same value of L − H, if one of them has fewer coefficients,
then it is given a higher index. (Equivalently, subbands formed through a larger number
of wavelet-filtering operations, i.e., larger value of L + H, are given a higher index.)

(3) If the two subbands are equivalent in the preceding considerations, then a higher index is
given to a subband that is low-pass in the vertical direction.

(4) If the two subbands are equivalent in the preceding considerations, then a higher index is
given to a subband that is low-pass in the horizontal direction.

This indexing scheme is somewhat ad hoc, and we have not made much effort to analyze whether
another ordering would provide better rate-disortion performance. To first order, bit planes that are
assigned the same priority value according to Eq. (2) have approximately the same relative effect, per
coefficient of the subband, on MSE distortion in the reconstructed image. Thus, changing the subband
indexing scheme isn’t likely to have a large impact on rate-distortion performance.
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