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Ground System Phase Estimation Techniques
for Uplink Array Applications

L. Paal,1 R. Mukai,2 V. Vilnrotter,2 T. Cornish,1 and D. Lee2

Phase drift in the radio frequency (RF) signals distributed to individual antennas
of an uplink array degrades the array phase calibration vector, resulting in loss of
combined power at the spacecraft. Since the calibration vector generally is not
applied to the uplink array right after calibration, small changes in the electrical
characteristics of the ground distribution system over time could result in significant
changes in phase, which must be measured and removed in order to preserve the
integrity of the calibration vector. This article describes practical techniques for
determining the electrical length of the fiber-optic distribution system in real time,
and applies these measurements to estimate unwanted changes in RF phase that
could impact uplink array operation if left uncorrected.

I. Introduction

A real-time technique for measuring the effective electrical distance to the array antennas is presented
in this article, together with techniques for determining the time-varying phase at each antenna due to
thermal effects and equipment drift on the ground. Since the carriers at each antenna accrue different
Doppler frequencies due to array geometry, which in turn impacts the phase estimation algorithms, a
method for removing the time-varying Doppler is discussed. A detailed mathematical model of the
uplink array ground system is developed, algorithms for estimating phase drifts are defined, and some
preliminary experimental results carried out using existing equipment at Signal Processing Center 10
(SPC 10) are presented.

One of the difficulties in determining the appropriate uplink phase vector is compensating for phase
differences present among the antennas on the ground. In general, the exact electrical distance, defined
here as the effective signal propagation distance from the control center to the antenna, is not precisely
known. This results in unknown phase differences among the antennas in an array. Furthermore, thermal
effects and equipment changes result in changes in the effective electrical distance seen by the central array
controller. Additionally, since the antennas in an array are at different spatial locations, the frequency
predicts for each antenna generally differ to a certain extent, particularly if the antennas are far apart,
since the Doppler for each antenna with respect to a given spacecraft may change significantly depending
on the antenna’s geographical location. All of these issues result in the presence of unknown, time-
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varying phases among the ground antennas. These time-varying phases must be accurately measured and
compensated if coherent combining of the array carriers at the spacecraft is to be successful.

II. Round-Trip Measurement of Electrical Phase

We begin by developing a model of the uplink array ground system and defining the key ideas in round-
trip electrical distance measurement. As shown in Fig. 1, the ground system consists of the 7.15-GHz
(X-band) exciters at SPC 10, X-band couplers and a round-trip phase comparator assembly at SPC 10,
optical fibers for signal distribution to the transmitting antennas, X-band couplers at the output of the
power amplifiers at each antenna, and additional optical fibers to return the coupled signal samples to
SPC 10 for comparison. The two-way optical-fiber distribution network to and from the antennas is
located in the same bundle for most of the approximately 16-km distance from SPC 10 to the Apollo
cluster, resulting in similar thermal behavior for the outgoing and returning signals. At the Apollo station,
the individual fibers are broken out from the common bundle and routed to their respective antennas,
typically a distance of a few hundred meters, over which the fibers may experience independent thermal
environments.

A small fraction of the amplified X-band signal is coupled at the output of the transmitter power
amplifier (PA) and routed back to SPC 10, where the phase of the signal is compared to that of the trans-
mitted phase, using the real-time phase comparator assembly (PCA) shown in Figs. 2(a) and 2(b). Since
the transmitted signal serves as reference for the return signal, the reference distribution system need
not be used to establish and maintain the local oscillator (LO) frequency, which is needed for the com-
plex downconversion operation. The inputs to the PCA are the outgoing (reference) and return (sample)

Transmitter 
System

Signal 
Distribution

Signal 
Generation

DSS 24 Path

Common Path

Reference Distribution

DSS 25 Path

DSS 24
DSS 25

Phase 
Center

Coupled Outputs

~258 m

SPC 10 
Exciters, PCA

FO Distribution System

PA PA

100-MHz Reference

Fig. 1.  Block diagram of the signal generation and distribution system from SPC 10 to the Apollo complex.

Apollo Station

2



DSS 24 
Reference G = 26 dB 12 dBm

DSS 24 
Sample

Rack 
Mount 

Computer

+16.4 
dBm

12.9 dBm

8 dB

2.4 
dBm

3.4 dBm

LPF

DSS 25 
Reference

DSS 25 
Sample

G = 26 dB

G = 26 dB

G = 26 dB

12 
dBm

12.9 
dBm

12.9 
dBm

LPF

LPF

LPF

LPF

LPF

LPF

LPF

4 dB

12 dB

12.4 dBm

−3.1 dBm

−0.5 
dBm 10 dB

−18.6 
dBm

−4.6 dBm

68
-P

in
 V

er
y 

H
ig

h 
D

en
si

ty
 C

ab
le

 C
on

ne
ct

or
 In

te
rc

on
ne

ct

DSS 24 Reference vs 
DSS 24 Sample

LO

Q

I

12.4 dBm

RF

RF

RF

RF

+15.5 
dBm

I/Q Mixer 
Module

Amp

PD

Amp

Amp

Amp

Amp

Amp

Amp

Amp

Amp

Amp

Amp

RF

I/Q Mixer 
Module

RF
11.9 dBm

6 dB

Op

Op

Op

Op

Op

Op

Op

Op

6 dB −3.6 dBm

−10 dB

10 dB6 dB
−4 dBm

I/Q Mixer 
Module

RF

RF

I/Q Mixer 
Module

Amp

LO

LO

LO

I

I

I

Q

Q

Q

DSS 25 Reference vs 
DSS 24 Sample

DSS 25 Reference vs 
DSS 24 Reference

DSS 25 Reference vs 
DSS 25 Sample

8

−13.6 
dBm

−10 dB

Fig. 2.  Phase comparator assembly:  (a) block diagram of the microwave electronics and (b) a picture of the 
completed PCA, showing the microwave components and inputs (used with permission of Spaceborne, Inc).

(a)

(b)

8-
C

ha
nn

el
 A

na
lo

g-
to

-D
ig

ita
l C

on
ve

rt
er

Power 
Divider 
(PD)

3



signals from two antennas (nominally Deep Space Station (DSS) 24 and DSS 25). The return signal path
is green in Fig. 1. The PCA outputs consist of complex samples of equal magnitude representing the
phase difference between the DSS 24 reference and sample, the DSS 25 reference and sample, the DSS 24
and DSS 25 references, and the DSS 25 reference compared to the DSS 24 sample.

The phase errors introduced in the PCA by radio frequency (RF) mixer phase imbalance and amplifier
biases will be calibrated and compensated for by a Labview program after digital sampling. The PCA
is designed to provide roughly 5-deg root-mean-square (rms) accuracy after calibration. The phase mea-
surement accuracy was estimated based on analysis of component voltage standing wave ratio (VSWR)
and phase imbalance, and will be verified by further testing. The power levels of the DSS 24 and DSS 25
reference and sample signals shown in Fig. 2(a) were measured at Goldstone using a transmitter setting
of 10 kW, which is in the middle of the region of interest for our experiments (3 kW to 20 kW). A 100-Hz
low-pass filter (LPF) is applied at baseband after the RF mixers to reduce noise and smooth out fluc-
tuations. After amplification, the baseband signals are sampled by an 8-channel, 16-bit analog-to-digital
converter. These samples are processed in Labview to remove any DC offsets, and the phase is computed
by taking the arctangent of the in-phase (I) and quadrature-phase (Q) baseband signals.

The object of the phase measurement at SPC 10 is to estimate the phase of the signal, at some well-
defined point such as the phase center, as it leaves the antenna. It is believed that the path length, and
hence the phase, are stable within the beam waveguide in each antenna, between the PA output coupler
and the phase center (see Fig. 1). Therefore, a measurement of the phase variations at the coupler output
is sufficient to characterize the phase variations in the transmitted signal, after far-field phase calibration
has been completed [1,2].

There are two distinct kinds of phase drift that need to be identified and treated separately: one-way
and two-way phase drifts. One-way drift refers to phase effects in either the outgoing or the return signal,
but not both. Two-way drift refers to phase effects occurring simultaneously in both the outgoing and
return paths.

An example of one-way drift might be a phase change occurring in the PA, induced by increasing the
transmitted power during an experiment (this effect has been noted in previous experiments). Direct
measurement of the phase change at SPC 10 is sufficient to describe the change in phase of the signal
leaving the antenna.

An example of two-way drift is the change in measured phase due to a temperature-induced change
in the electrical length of the optical-fiber bundle. The phase measured at SPC 10 now includes phase
changes in both the outgoing and return signals and, therefore, does not represent the phase of the signal
leaving the antenna. If the two path lengths are the same, and change by the same amount due to
thermal effects, then we can estimate the transmitted phase as half of the round-trip phase measured
at SPC 10. If the outgoing and return path lengths are substantially different, then a different fraction,
0 < α < 1, should be applied to the measured phase; this problem requires further experimental and
theoretical investigation.

During actual far-field uplink array calibration tracks, the transmitted frequencies are not constant,
as assumed above, but rather change with time to compensate for Doppler. An example of the rate and
magnitude of a realistic Doppler frequency trajectory is shown in Fig. 3. The cyclic variations are due to
Mars orbit, while Earth rotation generates a much slower increase from one minimum to the next. Note
that time intervals over which the frequency changes by a prescribed amount vary in duration over this
nearly sinusoidal trajectory: when the rate of change is minimum, (T1, T3, T5), a relatively large amount
of time is available for phase measurements, but during maximum rates of change, (T2, T4), the available
time becomes substantially less.
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Fig. 3.  Example of MGS uplink frequency trajectory, showing regions of nearly constant 
frequency due to Mars orbital dynamics.

III. Measurement of Electrical Phase at Different Frequencies

Phase measurements performed at different frequencies over long path lengths cannot be used to
estimate phase drifts in the ground system directly, because a change in frequency itself induces a change
in phase. This effect must be properly taken into account before meaningful estimates of ground system
phase drift can be obtained. However, the additional phase due to the frequency difference can be
estimated, if the electrical path length is known.

A. Electrical Distance Measurement

The following symbols will be used throughout this article in the mathematical model of the signal
distribution system and phase measurement algorithms. The number of antennas in the uplink array is
denoted by K; the set of time-varying phases at each of the K antennas is {θk(t)}; the set of distances
from the control center to each of the K antennas is

{
dk(t)

}
; the Doppler-shifted frequency, in hertz, for

each antenna is
{
fk(t)

}
; the wavelengths corresponding to the Doppler-shifted frequency at each antenna

are denoted by
{
λk(t)

}
; n is the index of refraction of the fiber-optic cables; c0 is the speed of light in a

vacuum (299,792,458 meters per second); and c is the speed of light in a fiber-optic cable, reduced by a
factor of n over the speed of light in vacuum.

The exact frequency of the transmitted X-band signal at antenna k is fk(t) at time t. The optical fibers
used to link antennas to the control center have an index of refraction n; hence, the speed of propagation
in the fiber is c = c0/n. Recalling the general relationship between speed, wavelength, and frequency,
c = λk(t)fk(t), it follows that if the frequency varies with time then so does the wavelength:

λk(t) =
c

fk(t)
(1)

Assuming the round-trip light time is negligible, the number of wavelengths contained in a fiber-optic
cable of length dk(t) at time t is
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Nk(t) ≡ dk(t)
λk(t)

=
dk(t)fk(t)

c
(2)

Note that Nk(t) is not necessarily an integer, since dk(t) is in general an arbitrary multiple of the
wavelength λk(t). The absolute phase between the two cable ends can be defined as

Θk(t) ≡ 2π Nk(t) =
2π

c
dk(t)fk(t) (3)

This expression shows that absolute phase is proportional to frequency. If the absolute phase and exact
frequency were available, and if in addition we assume that dk(t) = dk is approximately constant over a
suitably short time interval (t1 < t < t2) around time t, then the distance could be found by measuring
the absolute phase and substituting into Eq. (3). Even if the absolute phase is not known, the change
in absolute phase can be determined at two different times, t1 and t2, using two different frequencies,
fk(t1), fk(t2). We can now solve Eq. (3) for dk as follows:

dk(t1 < t < t2) =
c

2π

Θk(t2) − Θk(t1)
fk(t2) − fk(t1)

∼= c

2π

∆Θk(t)
∆fk(t)

(4)

For the case of long fibers that contain a great many but unknown number of wavelengths, we typically
do not have access to the absolute phase. Instead, we have access only to the measured phase, defined as

θk(t) = 2π
dk(t) mod λk(t)

λk(t)
(5)

In Eq. (5), the term dk(t) mod λk(t) is the amount by which the electrical distance dk(t) is greater than
the next lowest integer multiple of λk(t). When that distance is divided by the wavelength λk(t), the
result is the fraction of a wavelength by which dk(t) exceeds an integral multiple of λk(t). Multiplying
this fraction by 2π, as in Eq. (5), yields the measured electrical phase in radians.

Next, the frequency and hence the wavelength, λk(t), are varied in order to sweep θk(t) from 0 up to
2π. In principle, this can be done by starting with a frequency such that θk(t) = 0. This frequency then
can be increased in order to decrease the wavelength λk(t), thereby sweeping θk(t) through 2π radians, or
equivalently zero. Performing such a sweep gives us two values of λk(t) such that θk(t) = 0, establishing
the electrical distance measurement. Setting the expression for phase at the start of the sweep, t1, to
zero yields

θk(t1) = 2π
dk(t1) mod λk(t1)

λk(t1)
= 0 (6)

At the end of the sweep, t2, after the frequency has been increased (or wavelength decreased), the
expression for phase is again

θk(t2) = 2π
dk(t2) mod λk(t2)

λk(t2)
= 0 (7)

Defining
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M ≡ dk(t1)
λk(t1)

(8)

where M is the integer number of wavelengths equal to the electrical distance at time t1, we can see that
the number of wavelengths contained in the electrical distance dk(t) at t2 must have increased by exactly
one wavelength, whenever Eqs. (8) and (9) are satisfied:

M + 1 =
dk(t2)
λk(t2)

(9)

A similar argument applies for decreasing frequencies, but then we subtract 1 from M . Since the electrical
distance dk(t) varies slowly with thermal changes, we can assume that it remains constant over the
duration of the electrical distance measurement, dk(t) = dk. This allows us to rewrite Eqs. (8) and (9) as

M =
dk

λk(t1)

M + 1 =
dk

λk(t2)

(10)

Substituting for M and rearranging, we obtain

1 =
dk

λk(t2)
− dk

λk(t1)
= dk

(
λ−1

k (t2) − λ−1
k (t1)

)
(11)

The electrical distance is found by solving equation Eq. (11) to obtain

dk =
(
λ−1

k (t2) − λ−1
k (t1)

)−1
(12)

The wavelengths λk(t1) at the start of the measurement and λk(t2) at the end of the measurement are
found using Eq. (1). Substitution of Eq. (1) into Eq. (12) yields the electrical length in terms of the
known frequencies at the beginning and end of the measurements:

dk =
(
λ−1

k (t2) − λ−1
k (t1)

)−1
= c

(
fk(t2) − fk(t1)

)−1 (13)

The procedure for determining the electrical distance by inducing a 2π radian phase change can be
summarized as follows:

(1) Perform a frequency sweep in which the frequency applied to antenna k is increased. A
linear frequency ramp is well-suited for this purpose.

(2) Note the time when the measured phase θk(t) of the return signal from antenna k is exactly
zero, and call this time t1. We now have θk(t1) = 0.

(3) As the frequency ramp continues, note the next time when θk(t) is zero, and call this
time t2.

(4) Using the known frequencies at times t1 and t2, find the electrical distance using Eq. (13).
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In uplink arraying applications, the quantity of interest is the real-time phase θk(t) so that variations
due to thermal effects and equipment drift can be measured and corrected. In the above derivation,
we have assumed that the speed of light in the optic fiber, c, was known. Although the speed of light
in vacuum is known with great precision, the speed of light in the optic fiber depends on the index of
refraction n, an approximate value that usually is obtained from the manufacturer’s specification sheets
but is not usually measured in the field. However, it is important to observe that, even if the true index
of refraction of the fiber-optic cable, n, is unknown, the estimate of real-time phase θk(t) is not affected.
This can be demonstrated by noting that for any frequency fk(t) we have

λk(t) =
c

fk(t)
=

c0

nfk(t)
(14)

where c0 is the speed of light in vacuum. Equation (14) shows that λk(t) ∝ 1/n. By Eq. (13), it is also
true that dk ∝ 1/n since c = c0/n. The 1/n term cancels out in Eq. (7); therefore, the same value of θk(t)
will be obtained regardless of n. This means that knowledge of the index of refraction is not necessary
for the purpose of uplink array phasing where θk(t) is the quantity of interest.

B. Averaged Electrical Distance Measurement

The above procedure illustrates the concept of the electrical distance measurement, but it is only
a single estimate of the electrical distance; hence, it may not be reliable in the presence of significant
measurement errors. A more robust procedure for determining electrical distance counts a large number of
phase cycles instead of a single cycle, in effect averaging out the error incurred during each measurement
(assuming zero-mean measurement errors), hence reducing the error variance in proportion to the number
of cycles.

With the cycle-averaging approach, the measurement is carried out over Pk > 1 cycles, since a large Pk

would greatly reduce the error in the computed value of dk. We also generalize the measurement somewhat
by noting that it is not necessary to have θk(t1) = 0 at the start and θk(t2) = 0 at the end of the frequency
ramp; we merely have to measure the total change in phase and in so doing determine both the integer
number of cycles and the fractional-cycle remainder through which we have swept θk(t). Denoting the
integer part of the phase change by Pk, and the fractional part by ∆Pk, we obtain

Pk + ∆Pk =
θk(t2) − θk(t2)

2π
(15)

where θk(t2)−θk(t1) is the total phase change. Note that the number of cycles is also the number of extra
wavelengths contained in the electrical distance dk as the wavelength changes due to the frequency sweep.
For example, if ∆θk = 9π, then the frequency sweep has shortened the wavelength so that 4.5 extra
wavelengths are now contained in the distance dk. We modify Eq. (11) to read

Pk + ∆Pk = dk

(
λ−1

k (t2) − λ−1
k (t1)

)
(16)

The same change can be substituted in Eqs. (12) and (13) to obtain

dk = (Pk + ∆Pk)
(
λ−1

k (t2) − λ−1
k (t1)

)−1
= c(Pk + ∆Pk)

(
fk(t2) − fk(t1)

)−1 (17)

Equation (17) is more robust with respect to errors in the measurement of the starting and ending
frequencies for large values of Pk. It is also robust with respect to errors in Pk itself. For example, if
Pk = 1 and ∆Pk

∼= 0, then a measurement error of just 0.2 cycles will cause a 20 percent error in dk.
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If Pk = 100, however, then a measurement error of 0.2 cycles will cause only a 0.2 percent error in dk. For
this reason, measurement of phase over a large number of cycles is the preferred method. The following
examples illustrate key points in the application of these techniques.

Example 1. Determination of Electrical Path Length. This example uses actual data obtained
during an experiment to measure the round-trip electrical path lengths between SPC 10, DSS 24, and
DSS 25. The return signal was coupled out after the power amplifier, as shown in Fig. 1. In this scenario,
an uplink array consisting of two antennas will be used. We assume that the electrical distances are
initially unknown. The first step is the determination of electrical distances d1 and d2. Assume that a
frequency ramp is applied to both antennas, with f1 = 7.150000 GHz and f2 = 7.150240 GHz. This is a
frequency difference of 240 kHz. The total phase change measured at antenna 1 is ∆θ1 = 13285 deg and
that the total phase change measured at antenna 2 is ∆θ2 = 13469 deg. This means that at antenna 1
the change in wavelength has caused a sweep through P1 + ∆P1 = 13285 deg/360 deg = 36 + 0.90278
cycles. Likewise, the change in wavelength at antenna 2 has caused a sweep through P2 + ∆P2 =
13469 deg/360 deg = 37 + 0.41389 cycles. Using Eq. (17), and assuming that n = (0.72)−1 so that
c = 0.72c0 in the fiber-optic cables, we have

d1 =
(0.72c0) (36.90278)

240 kHz

= 3.319 · 104 m

= 33.19 km

(18)

at antenna 1. A similar calculation yields 33.65 km at antenna 2. These numbers are consistent with the
known physical distances from SPC 10 to the DSS 24 and DSS 25 antennas.

Example 2. A One-Millimeter Change in Distance with a Constant Frequency. Suppose
that the carrier frequency remains constant at 7.0 GHz but that there is a 1-mm change in electrical path
length. The absolute phase is given by

Θk(t) ≡ 2πNk(t) =
2π

c
dk(t)fk(t) (19)

A change in electrical distance thus is given by

∆dk =
c∆Θ

2πfk(t)
(20)

Although we cannot measure absolute phase directly, the change in absolute phase is equal to the change
in observable relative phase. This quantity can be measured, and Eq. (20) can be applied. A numerical
example illustrating the measurement of a 1-mm change in electrical distance due to thermal expansion
is shown in Table 1. A 1-mm change in total electrical distance thus results in a change of 8.4 deg in
phase, which is measurable. The change in phase of the signal leaving the transmitter can be estimated
by dividing this measured value by 2, yielding 4.2 deg as the final estimate.

Note that the importance of electrical distance lies in the phase change produced by changes in electrical
distance. Hence, even though absolute electrical distance should be scaled by the index of refraction n,
this effect cancels out when we are computing the quantity of interest, which is the phase effect caused
by electrical distance. Hence, we use n = 1 in this and all other examples.
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Table 1. Numerical example illustrating the phase change of 0.1467 rad caused by a 1-mm
thermal expansion in electrical distance.

True ∆ ∆ ∆
Time, Frequency, Phase,

λ, m Wavelengths distance, frequency, phase, distance,
s GHz rad

km Hz rad m

0 7.0000000 0.042827494 700484.5999 30.00000000 — 3.769384146 — —

1000 7.0000000 0.042827494 700484.6233 30.00000100 0 3.916093298 0.146709152 0.001

Changes in the electrical distance dk(t) must be measured over time since electrical distance is affected
by the temperature of the fiber optics and other physical factors. Since dk(t) is assumed to be a slowly
varying function of time, one can choose a time interval length T such that dk(t) is nearly constant from t
to (t + T ) for all t. Since dk(t) is assumed to be nearly static over each interval, one can perform the
following computation at each time interval:

dk

(
nT +

T

2

)
≈ c

(
θk(nT + T ) − θk(nT )

)
2π

(
fk(nT + T ) − fk(nT )

) (21)

Frequency fk(t) and phase θk(t) are both assumed to be known at all times t. The slowly varying nature
of dk(t) allows us to track electrical distance changes at the kth antenna by periodically evaluating
Eq. (21). Continuous real-time phase measurements allow any phase-wrapping effects in θk(t) to be
accounted for.

Example 3. Obtaining the Electrical Distance Under the Quasi-Static Assumption. An
application of this method for T = 10 s is shown in Table 2. In Table 2, a frequency change of 50 kHz
is applied over 10 s, a time during which the quasi-static assumption regarding electrical length certainly
holds. The wavelength is seen to change by 306 nm. However, over a distance of 30 km, this produces
more than 5 wavelengths of change, resulting in a phase rotation of over 31.437 rad in all. Substitution of
the measured phase change and the measured frequency change into Eq. (21) yields a distance estimate of
30 km, which agrees entirely with the actual 30-km distance. Repeated applications of this measurement
can be used to track changes in electrical distance over time.

Example 4. Measuring Electrical Distance Using Actual Mars Global Surveyor (MGS)
Predicts. Referring to the realistic MGS predict frequency variations depicted in Fig. 3, we will determine
the electrical distance at times (T1, T2, T3), which corresponds to a total change in Doppler frequency of
approximately 80 kHz. We can use these available frequency variations themselves to generate a phase
rotation at the PCA, thus enabling the estimation of electrical distance by means of Eq. (21). Since the
rate of change of frequency is not at our disposal, the length of time T required for each measurement
will necessarily be different at different times along the frequency trajectory, as indicated in Fig. 3. In
this example, we assume that the round-trip electrical distance remains constant at exactly 30 km but
that the MGS frequency predicts of Fig. 3 are used. Tables 3 through 5 illustrate these measurement
concepts.

Example 5. Measuring Change in Electrical Distance at Different Frequencies. The change
in phase from one epoch to the next can be inferred from the change in electrical distance caused by ther-
mal effects (for example), using the relation θ∆dk

= 2π∆dk/λ̄, where the overbar denotes the average
of the wavelengths corresponding to the two epochs (the two end points of the measurement). Since a
Doppler frequency of approximately 120 kHz is small compared to 7.15 GHz (their ratio is 1.68×10−5), the
true wavelengths at either end point could be used instead of the average, without incurring a significant

10



Table 2. Numerical example of distance measurement at two different times.

True ∆ ∆ Estimated
Time, Frequency,

λ, m distance, Wavelengths frequency, phase, distance,
s GHz

km Hz rad km

0 7.000000000 0.042827494 30.000000000 700484.5999 — — —

10 7.000050000 0.042827188 30.000000000 700489.6034 50000 31.43767533 30

Table 3. Measured 30-km electrical distance near interval T1 (Example 4). Measurement interval = 596 s (∼10 min).

True ∆ Estimated
Time, Frequency, Phase, ∆

λ, m distance, Wavelengths frequency, distance,
s GHz rad phase

km Hz km

757 7.164819428 0.041842291 30.000000000 716977.9529 — 5.987503064 — —

1353 7.164827919 0.041842241 30.000000000 716978.8026 8490.666859 11.32603963 5.338536562 30

Table 4. Measured 30-km electrical distance near interval T2 (Example 4). Measurement interval = 174 s (∼3 min).

True ∆ Estimated
Time, Frequency, Phase, ∆

λ, m distance, Wavelengths frequency, distance,
s GHz rad phase

km Hz km

2739 7.164892114 0.041841866 30.000000000 716985.2266 — 1.423515229 — —

2913 7.164901053 0.041841814 30.000000000 716986.1211 8939.216531 7.044078969 5.62056374 30

Table 5. Measured 30-km electrical distance near interval T3 (Example 4). Measurement interval = 594 s (∼10 min).

True ∆ ∆ Estimated
Time, Frequency, Phase,

λ, m distance, Wavelengths frequency, phase, distance,
s GHz rad

km Hz rad km

3655 7.164930912 0.041841640 30.000000000 716989.109 — 0.684988005 — —

4249 7.164939777 0.041841588 30.000000000 716989.9962 8865.617451 6.259276065 5.574288059 30

error. This example is similar to Example 4 in that it is assumed the distance dk remains fixed within a
measurement epoch (i.e., T1), but it may change between epochs. Here it is assumed that the electrical
path length changes by 1 mm between epochs, as does the frequency due to predicts; nevertheless, the
change in path length is measured correctly using the frequency change at each epoch to generate the
phase change.

As shown in Tables 6 through 8, a 1-mm change in the electrical distance can be detected with great
accuracy at any frequency under the assumption that the electrical distance is quasi-static (i.e., static
during the measurement interval). Therefore, this technique could be applied to monitor phase drifts
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Table 6. Measured 30-km electrical distance near interval T1 (Example 5). Measurement interval = 596 s (∼10 min).

True ∆ ∆ Estimated
Time, Frequency, Phase,

λ, m distance, Wavelengths frequency, phase, distance,
s GHz rad

km Hz rad km

757 7.164819428 0.041842291 30.000000000 716977.9529 — 5.987503064 — —

1353 7.164827919 0.041842241 30.000000000 716978.8026 8490.666859 11.32603963 5.338536562 30

Table 7. Measured 30-km electrical distance near interval T2 (Example 5). Measurement interval = 174 s (∼3 min).

True ∆ ∆ Estimated
Time, Frequency, Phase,

λ, m distance, Wavelengths frequency, phase, distance,
s GHz rad

km Hz rad km

2739 7.164892114 0.041841866 30.000001000 716985.2505 — 1.573680264 — —

2913 7.164901053 0.041841814 30.000001000 716986.145 8939.216531 7.194244191 5.620563927 30.000001

Table 8. Measured 30-km electrical distance near interval T3 (Example 5). Measurement interval = 594 s (∼10 min).

True ∆ ∆ Estimated
Time, Frequency, Phase,

λ, m distance, Wavelengths frequency, phase, distance,
s GHz rad

km Hz rad km

3655 7.164930912 0.041841640 30.000002000 716989.1568 — 0.9853197 — —

4249 7.164939777 0.041841588 30.000002000 716990.044 8865.61745 6.559608131 5.574288431 30.000002

by measuring the electrical distance, provided that a rapid frequency ramp can be applied each time a
measurement is performed. The reason for the rapid frequency ramp is to minimize path length change
during the measurement. In the next section, we relax this requirement by extending the above results
to enable measuring the phase in the presence of simultaneous frequency and path length variations.

IV. Real-Time Monitoring of Local Phase

The following measurement technique does not assume constant electrical distance over the measure-
ment interval, but does assume that a distance calibration has been performed using the frequency-ramp
technique described in Section III.

Let times t1 and t2 be the start and end times of the measurement interval. The true change in phase,
measured at SPC 10, is given by
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∆θk = 2π

(
dk(t2)
λk(t2)

− dk(t1)
λk(t1)

)

= 2π

(
dk(t2)fk(t2)

c
− dk(t1)fk(t1)

c

)

=
2π

c

(
dk(t2)fk(t2) − dk(t1)fk(t1)

)

(22)

If a change in electrical distance and frequency occurs over the measurement interval, then we can write
fk(t2) = fk(t1) + ∆fk, dk(t2) = dk(t1) + ∆dk, and rewrite Eq. (22) as

∆θk =
2π

c

{[
dk(t1) + ∆dk

][
fk(t1) + ∆fk

]
− dk(t1)fk(t1)

}

=
2π

c

{
dk(t1)fk(t1) + fk(t1)∆dk + dk(t1)∆fk + ∆dk∆fk − dk(t1)fk(t1)

}

=
2π

c

{
fk(t1)∆dk + dk(t1)∆fk + ∆dk∆fk

}

(23)

If ∆dk = 0, then Eq. (23) reduces to ∆θk = (2π/c)dk(t1)∆fk and can be used to measure dk(t1) by
purposely changing the frequency and noting the resulting phase change. Note that the time evolution
of either the frequency or the distance is not important—only their change enters into Eq. (23).

Equation (23) is an exact expression for the measured round-trip phase difference resulting from
simultaneous changes in frequency and electrical delay. It consists of three terms: the change in phase
due to change in electrical distance at frequency f(t1); a change in phase due to change in frequency at
the initial distance; and a term due to change in both frequency and change in distance. The third term
can be ignored in uplink arraying applications, as the following example illustrates.

Supposing ∆f is 120 kHz, the greatest change possible due to Mars orbital dynamics is shown in Fig. 3.
Even if we assume that the electrical length changes by as much as 1 m, which is much greater than any
anticipated length change over a 30-km round-trip distance, the resulting phase change due to the third
term in Eq. (23) is only 2π∆dk∆fk/c = 6.2832× 1.2× 105/3× 108 = 2.5× 10−3 rad, or 0.14 deg. Clearly,
this term can be neglected in our application.

The second term represents the change in phase due to change in frequency, at the electrical distance
initially measured at t1. Since the frequency trajectory due to predicts is known, this term can be
subtracted out in real time. We denote this term by ξk(t), where again t refers to time elapsed after
initial calibration at t1.

The first term represents the change in phase due to a change in distance, using only the frequency
at t1. This is the phase-drift term we need to monitor and subtract out from the calibration term in
order to keep the uplink array phased up for a long time. Accounting for the round-trip distance, we
denote the phase term leaving the antenna as a fraction α of the first term: ψk(t) = 2παfk(t)∆dk(t)/c,
where time is measured from t1. We therefore can express the equation used to monitor the phase due
to electrical path length change as

ψk(t) = α
[
θk(t) − ξk(t)

]
, t > t1 (24)
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In summary, a practical procedure for real-time tracking of phase due to thermally induced change in
electrical distance is

(1) Apply a fast ramp for a suitably short time, so that changes in electrical distance are
insignificant during the measurement interval, and determine dk(t1).

(2) Continue monitoring the phase in real time, using Eq. (24).

If the phase change occurred in only the outgoing path, such as in the power amplifier section of the
signal distribution system, then α = 1 in Eq. (24). If the measured phase is the result of round-trip phase
accumulation, as with thermal expansion of the optical fibers, then the appropriate value of α is closer
to 1/2, but the exact value remains to be determined.

Example 6. Computation of Electrical Distance when Both Frequency and Distance
Change over the Measurement Interval. We will compute the change in electrical distance using
the technique of Eq. (24). We will assume a 1-mm change in electrical length and use the MGS predicts for
the frequency from 757 s to 1353 s (on the time axis of Fig. 3). It is assumed that the initial distance has
been obtained using the fast-ramp technique of Section III, followed by measurement of the total change
in phase, and subtraction of the accumulated phase due to the change in frequency; the phase components
are clearly shown in Table 9. Note that the computed change in electrical distance is almost exactly 1 mm,
with very little error. This technique therefore can be applied in real time to continuously monitor local
phase drifts caused by thermal expansion of the optical fibers or other equipment instabilities.

Table 9. Example of phase tracking, when both distance and frequency change over the measurement interval.

True ∆ Phase
Time, Frequency, Phase,

λ, m distance, Wavelengths frequency, change, ∆, m
s GHz rad

km Hz rad

757 7.164819428 0.041842291 30.000000000 716977.9529 5.987503064 — — —

1353 7.164827919 0.041842241 30.000001000 716978.8265 11.47620331 8490.666859 5.48870 0.00100

∆θ (net) 5.48870

∆θ (frequency) 5.33854

Difference, rad 0.15016

∆distance, m 0.00100

V. Summary and Conclusions

In this article, a method for initially estimating electrical distance and continuously monitoring time-
varying phase drifts has been presented. The technique uses the transmitted carrier signal itself as the
reference; hence, it does not rely on an external reference frequency to provide a stable local oscillator.
However, it does require accurate knowledge of the carrier frequency to enable removal of accumulated
phase due to time-varying changes in transmitted frequency, such as occurs during Doppler compensation.
This phase measurement technique does not inherently distinguish between round-trip and one-way phase
effects; hence, the cause of the phase change has to be determined separately. Since the primary goal of
round-trip phase measurement for uplink array applications is the estimation of the phase drift at the
antenna phase center, it is important to distinguish between round-trip phase accumulation, for which
approximately half of the measured phase applies, and phase drifts in the power amplifier section, all
of which affects the antenna phase. In addition, this technique must be extended to include modulated
carrier signals that will be encountered during actual uplink arraying operations.
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