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Tropospheric Emission Spectrometer (TES)
Spectrum Reconstruction Analysis Summary

Andre Tkacenko∗, Matthew D. Thill∗, and Curtis Jin†

ABSTRACT. — The purpose of this article is to summarize the attempts made to

carry out spectrum reconstruction for interferograms obtained from the Tropospheric

Emission Spectrometer (TES) on-board the Aura satellite, after the laser used to

trigger the sampling unit malfunctioned in the spring of 2016. In particular, we

highlight the drawbacks that made reconstruction problematic and the approaches

attempted to overcome them. These drawbacks include ill-conditioning of the

reconstruction problem incurred with nonuniformly spaced interferogram samples,

discrepancies in the reported and true spatial locations of the samples, and low

resolution of the spatial location data. Algorithms used to overcome these pitfalls,

involving regularized reconstruction methods in the case of unknown/imperfect sample

locations, are presented, along with reconstruction results showing the difficulties

associated with the spectrum reconstruction problem.

I. Introduction

In the spring of 2016 until the early part of 2017, the laser from the Tropospheric

Emission Spectrometer (TES) instrument on-board the Aura (EOS CH-1) NASA

Earth observation satellite ceased to be operational. This laser was used as part of a

Michelson interferometer to help generate samples of interferogram (IFGM) waveforms

that were uniformly spaced in terms of optical path difference (OPD), as shown in

Figure 1. Specifically, the laser was used to trigger the analog-to-digital converter

(ADC) used to sample an IFGM waveform based on integer multiples of the laser

fringe counts observed.
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Figure 1. Block diagram of TES instrument setup.

In the event that the laser ceased to be operational, a backup system had been

implemented in which IFGM samples from the ADC were collected uniformly in time.

This system, referred to as the SimCLK module1, generated roughly the same number

of samples during a scan as the nominal laser setup. However, as the mirror in the

Michelson interferometer does not move at a constant velocity, this resulted in IFGM

samples that were, in general, nonuniformly spaced in terms of OPD.

In order to make the reconstruction of the desired IFGM spectrum even remotely

feasible, the mapping of the mirror location (effectively the OPD) as a function of

time had to be established. Information for this mapping was provided by the

Instrument Control Subsystem (ICS) module within TES2. This subsystem provided

mirror encoder position information, as well as fringe count values (valid when the

laser was operational) at discrete values of time, from which an OPD time series could

nominally be derived. However, samples from the ICS were generally at a much lower

time resolution than those obtained for the IFGM waveform from SimCLK.

A. Outline

In Section II, we describe in detail the spectrum reconstruction problem encountered

for TES. There, we show how the desired IFGM spectral values are related to the

given OPD-domain IFGM samples. It is shown how the IFGM samples can be found

1K. W. Bowman, E. Sarkissian, D. Tremblay, H. M. Worden, and J. Zong, “Tropospheric Emission

Spectrometer (TES) Level 1 Algorithm Theoretical Basis Document,” Version 2.0, D-16479 (internal

document), Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, July 6, 2004.

2Ibid.
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from the OPD-domain IFGM samples by solving an overdetermined linear system of

equations.

In Sections III, IV, and V, we cover some of the obstacles encountered with respect to

solving the spectrum reconstruction problem specifically for TES. These issues are

discussed in order of how they manifested throughout the analysis conducted for this

study. However, in terms of the challenges they posed to successfully solving the

spectrum reconstruction problem, they are presented in ascending order of difficulty.

In particular, in Section III, we highlight the ill-conditioning of the spectrum

reconstruction problem in the presence of nonuniformly spaced data characteristic of

that encountered for TES. This analysis is presented assuming the OPD positions of

the IFGM samples are known exactly.

In Section IV, we present some of the discrepancies found for the OPD locations from

different OPD time series returned from the ICS. There, it is shown that the ICS time

series data for the mirror location from Figure 1 can have a discrepancy on the order

of 10−3 cm, a value which is approximately equal to the Nyquist sampling interval for

a 1B2 type waveform 3.

In Section V, we investigate the largest obstacle to successfully solving the spectrum

reconstruction problem for TES, namely the low resolution of the ICS OPD data

measurements. Specifically, the OPD locations for the IFGM samples must be

obtained by interpolating the OPD time series data from the ICS. However, as the ICS

data are only reported at a low rate of 100 Hz, this results in an overabundance of

OPD locations that must be interpolated between adjacent ICS data measurements.

Reliance on this level of interpolation for the sampling of the real bandpass signals of

interest is shown to be especially deleterious.

In Sections VI and VII, we describe some of the signal processing algorithms

considered for this study to solve the spectrum reconstruction problem for TES. While

these methods were ultimately unsuccessful here, they may have applications for

reconstruction problems with less severe uncertainties.

In Section VI, we cover a Tikhonov regularized spectrum reconstruction algorithm

that applies for the case of unknown/imperfect sample locations. Specifically, the

spectrum and position vectors for the IFGM waveform are jointly optimized. After

globally optimizing the spectrum vector by solving the normal equations, a gradient

descent algorithm is developed to locally optimize the position vector.

In Section VII, we present a power spectral density reconstruction algorithm

applicable for the case of unknown/imperfect sample locations. This method exploits

the fact that all IFGM waveforms are essentially shifted autocorrelation signals, which

greatly improves the conditioning of the spectrum reconstruction problem. The

spectrum and position vectors are jointly optimized as before. After globally

3Ibid.
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optimizing the spectrum vector by solving a convex quadratic programming problem,

a gradient descent algorithm is developed to locally optimize the position vector.

Finally, concluding remarks are made in Section VIII. There, we reflect on the pitfalls

encountered with respect to the spectrum reconstruction problem for TES, which

ultimately led to the failure of the proposed algorithms considered to solve this

problem. Approaches for future investigations, in order to make the problem more

feasible, are also presented.

II. Spectrum Reconstruction Problem

Let I(x) denote a desired IFGM signal as a function of the OPD x. Ideally, this

waveform would be centered such that the zero path difference (ZPD) occurs at x = 0,

however, in practice, this need not be the case. Instead we have access to a shifted

version of the IFGM, specifically Iσ(x) , I(x− xZPD), where xZPD is the location of

the ZPD. From Iσ(x), we are interested in reconstructing the Fourier transform

spectrum Sσ(ν), where ν is the wavenumber. (After reconstructing Sσ(ν), we can

recover S(ν) using S(ν) = Sσ(ν) ej2πνxZPD , a process referred to as phase alignment 4.)

The signal model used to represent the IFGM waveforms and associated spectra

encountered in TES comes from [1]. In particular, all IFGM waveforms are assumed to

be real and expressible in terms of a discrete Fourier series (DFS) representation [2].

Furthermore, due to the presence of optical bandpass filters on TES 5, all IFGMs are

bandpass and confined to alias band regions. This is shown pictorially in Figure 2.

Here, ν0 is the alias band width, while ` is the alias number for the alias band. By

constraining Sσ(ν) (and equivalently S(ν)) to this region, theoretically the entire

IFGM waveform Iσ(x) (and equivalently I(x)) can be reconstructed by uniformly

sampling Iσ(x) at the Nyquist rate 2ν0, i.e., by sampling at x = k
2ν0

for k ∈ Z [2].

Furthermore, as Iσ(x) is assumed to have a DFS representation, reconstruction can be

guaranteed by sampling at x = k
2ν0

, where k spans a set of consecutive integers equal

to the number of terms in the DFS representation.

Figure 2. Graphical representation of bandpass IFGM spectrum Sσ(ν).

4Ibid.

5Ibid.
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Let Nspec denote the number of spectral lines for ν ≥ 0. We assume that these lines

are located at the following wavenumber values:

νm ,

(
(`− 1) +

m− 1

Nspec

)
ν0 , 1 ≤ m ≤ Nspec. (1)

If sσ;m denotes the weight of the spectral line at ν = νm, then the IFGM waveform

Iσ(x) is modeled as follows:

Iσ(x) = 2 Re

Nspec∑
m=1

sσ;me
j2πνmx

 =

Nspec∑
m=1

[2 Re[sσ;m] cos(2πνmx)− 2 Im[sσ;m] sin(2πνmx)] .

(2)

The spectrum reconstruction problem consists of deriving the set of spectrum values

{sσ;m} from samples of the IFGM waveform Iσ(x). To more properly formulate this

problem, we define the following vectors:

s ,



Re[sσ;1]

...

Re
[
sσ;Nspec

]
Im[sσ;1]

...

Im
[
sσ;Nspec

]


∈ R2Nspec , a(x) ,



2 cos(2πν1x)

...

2 cos
(
2πνNspec

x
)

−2 sin(2πν1x)

...

−2 sin
(
2πνNspec

x
)


∈ R2Nspec .

Then from (2), it can be seen that we have

Iσ(x) = aT (x) s. (3)

For the spectrum reconstruction problem, we have access to samples Iσ(xk) for

1 ≤ k ≤ NIFGM, where xk denotes the OPD position of the k-th IFGM sample, and

NIFGM denotes the number of SimCLK IFGM samples. If we define the following

quantities:

i ,


Iσ(x1)

...

Iσ(xNIFGM
)

 ∈ RNIFGM , A(x) ,


aT (x1)

...

aT (xNIFGM
)

 ∈ RNIFGM×2Nspec ,

x ,


x1

...

xNIFGM

 ∈ RNIFGM ,

then from (3), we should have

i = A(x) s. (4)

Given knowledge of the SimCLK IFGM samples (equivalently, the vector i), and OPD

positions (equivalently, the vector x, which implies knowledge of the matrix A(x)), the
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spectrum vector s can ostensibly be found using (4). To obtain a unique solution for s,

this requires that NIFGM ≥ 2Nspec.

The remainder of this article is devoted to describing the challenges that manifested

with respect to solving the spectrum reconstruction problem in (4), as well as

approaches considered to overcome them. These challenges consist of three main

aspects: ill-conditioning of the spectrum reconstruction problem due to nonuniform

sampling; imperfect knowledge of the OPD locations; and low resolution of the OPD

time series mapping. Of the many methods considered to overcome these challenges,

the most promising algorithms investigated here for this task are presented.

III. Ill-Conditioning of the Spectrum Reconstruction Problem with nonuniform

Sampling

Nominally, TES was set up to sample the IFGM signal Iσ(x) at integer multiples of

λ0 , Lλlaser using the laser trigger for the IFGM ADC, which is the Nyquist rate for

the signal of interest. With the SimCLK module in place, on average, the IFGM is

sampled at integer multiples of λ̂0 , Lv
FIFGM,nom

, where v is the average OPD scan rate

of the mirror, which is ±4.2235 cm/sec, with the sign depending upon whether or not

the mirror is moving forward (+) or reverse (−). From the choice of operational

parameters selected for TES, this implies that λ0 = L(1.06415× 10−4 cm) and

λ̂0 = L(1.0641488× 10−4 cm). As such, under the case of uniform mirror velocity, the

SimCLK module was intended to yield the same set of samples as the laser triggered

sampling module, and so the SimCLK module would also sample the IFGM signal Iσ(x)

at the Nyquist rate.

However, as the mirror exhibits non-constant velocity, this results in a set of

nonuniform samples perturbed from the Nyquist rate. This yields adjacent samples

that are either too close to one another to provide enough independent information

about the signal of interest, or samples that are too far apart from one another,

leading to missing information. As this nonuniform sampling is a perturbation from

the Nyquist rate, this suggests that with the SimCLK module in operation, the IFGM

waveform Iσ(x) is sub-Nyquist sampled and aliasing exists, although no formal proof

of this statement is made here.

This nonuniformity of samples manifests in the ill-conditioning of the matrix A(x)

from (4). An example of this is shown in Figure 3, where we have plotted the singular

values of A(x) for a sample 1B2 black-body (BB) scan 6. Here, the position vector x

was formed by sampling the OPD time series generated by spline interpolation of the

ICS time/OPD data. As can be seen, most of the singular values are approximately

equal to each other, signifying that A(x) is approximately unitary, but then the

singular values drop off significantly, meaning that A(x) is rank deficient. In this

example, the dimension of the null space of A(x) was 100.

6Ibid.
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Figure 3. Singular values of the matrix A(x) for a 1B2 black-body (BB) scan. (NIFGM = 14152,

2Nspec = 13312)

The result of the ill-conditioning of the matrix A(x) is that it introduces errors in the

reconstructed spectrum. From (4), the minimum norm least squares solution for the

spectrum vector s is given by [3]

ŝ = A#(x) i, (5)

where A#(x) denotes the Moore-Penrose pseudoinverse [3] of A(x). Using a

simulated set of SimCLK IFGM samples, obtained from a laser-derived spectrum as

shown in Figure 4(a), for reconstruction as in (5), leads to the spectrum shown in

Figure 4(b). While the overall shape of the spectrum is discernible in this case, several

fine details, especially for larger wavenumber ν values have been compromised.

The results shown here highlight the inherent problems with spectrum reconstruction

that exist even when the sample locations x are known exactly. In the next section, we

explore discrepancies in the OPD locations reported from the ICS. These discrepancies

expose another major hurdle with respect to spectrum reconstruction: imperfect

knowledge of the sample locations x leading to the IFGM samples i.

IV. ICS Discrepancies in the OPD Locations

The ICS module within TES reports several location measurements, from which the

OPD can be derived. Specifically, this includes the mirror encoder position (EP), the

encoder digital number (EDN) (from which the EP is ostensibly derived via an affine

transformation), and the laser fringe count (FC). Nominally, the EP and FC are each

mapped to an OPD time series x(t) as follows:

7
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Figure 4. Spectrum reconstruction example using the minimum norm least squares solution ŝ from (5):

(a) desired spectrum obtained from 1B2 BB laser-derived samples and (b) reconstruction using

simulated SimCLK IFGM samples derived from spline interpolation of the ICS time/OPD data.

• The EP data are multiplied by four to generate OPD data, as TES is a

quadrupole interferometer 7.

• The FC data are scaled using the nominal wavelength for the Nd:YAG laser,

namely λlaser = 1.06415× 10−4 cm, to generate OPD data.

• Uniform temporal sampling of the ICS at frequency FICS = 100 Hz is assumed.

• Interpolation is used to obtain all other (viz. non-ICS sample) OPD time series

values.

• As the FC is only given in terms of a count integer, the OPD time series derived

from the FC can be translated by the first EP OPD time series value in order to

match the EP OPD time series at the start of each ICS data take, without loss

of generality.

As mentioned earlier, as an affine transformation of the EDN can be applied to obtain

the EP, the EDN can be mapped to an OPD time series using steps similar to those

above. Ideally, all such OPD time series should match, however empirically, this was

not found to be the case. Such discrepancies made spectrum reconstruction

particularly challenging, as only the EP can be used for the cases in which the laser is

not operational. This is because the EP is the only output that contains nominally

reliable mirror position information in absolute units in this case.

A statistical analysis was carried out on the count sequences EDN and FC, using

several ICS data captures for forward/reverse mirror scans when the TES laser was

operational. The results of this analysis were later synthesized with the EP

measurements to effectively compare the OPD time series resulting from each ICS

output (EP, EDN, and FC).

7Ibid.
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Regarding the EDN and FC count sequences, the following assumptions were made.

• The FC sequences were assumed to be the ground truth.

• Count values for the FC for reverse scans were negated to account for motor

motion polarity.

• Each FC count sequence was translated to start at 0 for both forward/reverse

scans.

• An affine transformation was applied to the EDN in order to match the FC at

the beginning/ending of the observation epoch (see Sec. IV-A).

For this analysis, ICS measurements for the set of laser/SimCLK data captures shown

in Table 1 were used. Forward and reverse scans corresponded to odd and even scan

ID values, respectively. Means and standard deviations of the count sequences were

generated across forward and reverse scans separately. From Table 1, it can be seen

that there were 104 forward and reverse scans used for this analysis.

Table 1. List of ICS data captures used for OPD time series statistical analysis. (Uncalibrated

spectrum types considered include black-body (BB), cold space (CS), and target (TGT)) 8.

Laser SimCLK

Run ID Spectrum Type ID Scan IDs Run ID Spectrum Type ID Scan IDs
27717 BB 00-19 27710 BB 00-19
27727 CS 00-09 27711 CS 00-09
27728 TGT 00-43 27712 TGT 00-43
27729 CS 00-09 27713 CS 00-09
27745 BB 00-19 27765 BB 00-19

A. Affine Transformation of EDN to Match FC Boundaries

As mentioned above, for the statistical analysis of the EDN and FC count sequences,

an affine transformation was applied to the EDN to match the ground truth FC at the

beginning/ending of each observation epoch. This was done in order to adhere to the

logical assumption that regardless of the paths taken by the EDN and FC, both

should start and finish at the same effective mirror location.

Quantitatively, suppose that the number of ICS data points for a given scan is NICS.

If {cEDN[n]}NICS−1
n=0 and {cFC[n]}NICS−1

n=0 denote the EDN/FC ICS count outputs,

respectively, then we seek an affine transformation of the form:

c̃EDN[n] = mcEDN[n] + b , 0 ≤ n ≤ NICS − 1, (6)

where the slope m and intercept b are chosen such that

c̃EDN[0] = cFC[0] , c̃EDN[NICS − 1] = cFC[NICS − 1] .

8Ibid.
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Elementary linear algebra shows m and b can be found by solving the following linear

system:  m

b

 =

 cEDN[0] 1

cEDN[NICS − 1] 1

−1  cFC[0]

cFC[NICS − 1]

 .
Note that the slope m is dimensionless, whereas the intercept b has the “units” of

counts. A statistical analysis was carried out on the dimensionless discrete-time

sequences cFC[n] and c̃EDN[n] (as well as other sequences derived from them).

Mapping to the EP (and equivalently the OPD) was only carried out at the end to

infer the conversion factor from EDN to EP.

B. Nominal Count Sequences

A plot of the mean value (plus/minus one standard deviation) of the nominal count

sequences cFC[n] and c̃EDN[n] is shown Figure 5(a) for forward scans and Figure 5(b)

for reverse scans. As mentioned earlier, each FC sequence was translated to start at 0

for both forward/reverse scans (i.e., the condition cFC[0] = 0 was enforced). From

these plots, it can be seen that the FC and the transformed EDN appear to match

very well. However, the dominant linear trend to the data obscures the differences

between these sequences.
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Figure 5. Mean plus/minus one standard deviation of the nominal count sequences cFC[n] and

c̃EDN[n]: (a) forward scans and (b) reverse scans.

C. Residual Count Sequences

The ensemble mean values (plus/minus one standard deviation) of the residual count

sequences (in which a least squares affine trend was removed from each) are shown in

Figure 6. From this, it can be seen that the forward and reverse scans appear

relatively consistent and repeatable, respectively. However, it can be seen that

deviations exist between the FC and the transformed EDN count sequences.
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Figure 6. Mean plus/minus one standard deviation of the FC and the transformed EDN residual count

sequences: (a) forward scans and (b) reverse scans.

D. Backward Difference Sequences

A statistical analysis was also carried out for the backward difference sequences given

below:

∆FC[n] , cFC[n]− cFC[n− 1] , (7)

∆̃EDN[n] , c̃EDN[n]− c̃EDN[n− 1] , (8)

with the initialization cFC[−1] = 0 and c̃EDN[−1] = 0. These difference sequences

represent an approximation to the velocity of the mirror location as a function of time.

Specifically, if the count sequences are mapped to OPD location values, then the

backward difference of these sequences multiplied by the sample rate FICS will

approximately correspond to the velocity of the mirror location at the sample time

under consideration.

Plots of the mean values (plus/minus one standard deviation) of the backward

difference sequences can be found in Figure 7 for the forward (a) and reverse (b) scan

directions. From these plots, it can be seen that, as before, the forward and reverse

scans appear relatively repeatable and consistent, respectively. An interesting

observation that can be made is that for both forward/reverse cases, the count

differences span a range of more than 120 counts/sample.

E. FC/Transformed EDN Count Difference Sequence

To highlight the discrepancies between the FC and the transformed EDN count

sequences, a statistical analysis was carried out for the raw difference between the two

sequences, defined as follows:

d[n] , cFC[n]− c̃EDN[n] . (9)

11
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Figure 7. Mean plus/minus one standard deviation of the backward difference sequences ∆FC[n] and

∆̃EDN[n] from (7) and (8), respectively: (a) forward scans and (b) reverse scans.

Plots of the mean (plus/minus one standard deviation) of the difference signal d[n]

from (9) are shown in Figure 8. From these plots, it can be seen that a nonlinear drift

component exists between the FC and the transformed EDN count sequences.

Furthermore, on average, the count discrepancy can be less than −5 counts for

forward scans and greater than 15 counts for reverse scans. In addition, the deviation

of the count discrepancies from the mean value is on the order of ±5 counts for both

forward/reverse scans. (As expected, the mean and standard deviation is zero at the

beginning/ending of the observation epoch due to boundary matching.)
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Figure 8. Mean plus/minus one standard deviation of the FC/transformed EDN count difference

sequence d[n] from (9): (a) forward scans and (b) reverse scans.

In Figure 9, plots of the mean (plus/minus one standard deviation) of the detrended

count difference sequences are given. From these plots, as well as those from Figure 8,

it can be seen that the detrended difference between the FC and the transformed EDN

counts exhibits two primary components: a high amplitude/low frequency

12



non-stationary wander component, and a low amplitude/high frequency periodic

component. Furthermore, the residual periodic component is more noticeable in the

reverse scans than the forward ones.
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Figure 9. Mean plus/minus one standard deviation of the detrended FC/transformed EDN count

difference sequence: (a) forward scans and (b) reverse scans.

F. Difference of FC/Transformed EDN Backward Difference Sequences

As a final sequence upon which to statistically characterize the ICS outputs, the

difference of the FC/transformed EDN backward difference sequences was considered.

Specifically, a statistical analysis of the following sequence was carried out:

D[n] , ∆FC[n]− ∆̃EDN[n] , (10)

where ∆FC[n] and ∆̃EDN[n] are as in (7) and (8), respectively.

Plots of the mean (plus/minus one standard deviation) of the difference of backward

difference sequences D[n] from (10) are shown in Figure 10. From these plots, it can

be seen that, on average, the difference between the counts per sample for the FC and

the transformed EDN is approximately zero, but that it can deviate on the order of

±4 counts/sample.

While the results from Figure 10 may not appear overly pertinent, interesting

observations can be made from the autocorrelation sequence [2] derived from D[n]. For

the case of finite-length data, the autocorrelation sequence R̂D[k] is calculated as

follows in this setting:

R̂D[k] ,



1

NICS − k

NICS−1∑
n=k

D[n]D∗[n− k] , 0 ≤ k ≤ NICS − 1,

0, k ≥ NICS,

R̂∗D[−k] , k ≤ −1.

(11)
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Figure 10. Mean plus/minus one standard deviation of the difference of FC/transformed EDN

backward difference sequences D[n] from (10): (a) forward scans and (b) reverse scans.

Here k represents the lag between sequence overlaps [2]. The function R̂D[k] from

above is an unbiased estimate of the true autocorrelation RD[k] , E [D[n]D∗[n− k]]

(assuming D[n] if is a wide sense stationary (WSS) process) [2].

Plots of the mean (plus/minus one standard deviation) of the autocorrelation sequence

R̂D[k] from (11) are shown in Figure 11. From these plots, it can be seen that a very

noticeable periodic component exists and appears to be at the same frequency for

both the forward and reverse scans.
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Figure 11. Mean plus/minus one standard deviation of the autocorrelation sequence R̂D[k] from (11):

(a) forward scans and (b) reverse scans.

To cull the periodic content of the autocorrelation sequence observed in Figure 11, a

suitable way is to calculate the power spectral density (PSD) [2]. This is computed as

follows:

ŜD(f) ,
∑
k∈Z

R̂D[k] e−j2πfk, (12)
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where f is the normalized frequency given by f = F
Fs

, with F begin the analog

frequency of the underlying time series and Fs being the sample rate of the

discrete-time sequence (nominally FICS here) [2]. The PSD is always non-negative

(i.e., ŜD(f) for all f) and is even here (i.e., ŜD(f) = ŜD(−f) for all f), as R̂D[k] is

real in this setting [2].

Plots of the mean (plus/minus one standard deviation) of the PSD ŜD(f) from (12),

calculated in decibel (dB) units, are shown in Figure 12. From these plots, a dominant

spectral component at f = 0.10742 can be seen for both the forward and reverse scans.

Assuming the sampling frequency is FICS = 100 Hz, then the dominant spectral

component occurs at a frequency of 10.742 Hz for both forward/reverse scans.
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Figure 12. Mean plus/minus one standard deviation of the power spectral density (PSD) ŜD(f) from

(12) in dB units: (a) forward scans and (b) reverse scans.

G. Empirical Distribution of EDN Affine Transformation Parameters

Histogram and kernel density estimate (KDE) plots of the affine transformation

parameters of the slope m and intercept b from (6) were generated. Specifically, the

histogram and KDE plots for the slope m are given in Figure 13, while those for the

intercept b are given in Figure 14. From the analysis carried out here, the following

was ascertained:

• Mean of slope m: 3.4387 (forward), 3.4386 (reverse).

• Standard deviation of slope m: 1.5854× 10−4 (forward), 2.0194× 10−4 (reverse).

• Mean of intercept b: −412003.7856 counts (forward), −570499.4462 counts

(reverse).

• Standard deviation of intercept b: 140.3222 counts (forward), 130.7771 counts

(reverse).
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Figure 13. Histogram and kernel density estimate (KDE) plots for the slope parameter m from (6): (a)

histogram for the forward scans, (b) histogram for the reverse scans, (c) KDE for the forward scans,

(d) KDE for the reverse scans.

From the KDE plots in Figure 13, it can be seen that for the slope m, the distribution

for the forward scans is weakly bimodal and appears approximately normal, whereas

for the reverse scans, the distribution has a more pronounced bimodality and exhibits

a noticeable skew from normality. Regarding the intercept b, from the KDE plots in

Figure 14, the distribution for the forward scans appears clearly bimodal with peaks

at approximately −4.121× 105 counts and −4.118× 105 counts, while for the reverse

scans, the distribution seems approximately unimodal, but with significant negative

skew.

H. Mapping Count Values to OPD and EP

Recall from the beginning of Sec. IV that from the FC nominal count sequence cFC[n],

the sequence of FC-derived OPD values xFC[n] is given as follows:

xFC[n] = λLcFC[n] .
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Figure 14. Histogram and kernel density estimate (KDE) plots for the intercept parameter b from (6):

(a) histogram for the forward scans, (b) histogram for the reverse scans, (c) KDE for the forward

scans, (d) KDE for the reverse scans.

Assuming the transformed EDN count sequence c̃EDN[n] satisfies c̃EDN[n] ≈ cFC[n],

then the sequence of OPD values derived from this, denoted here by xEDN[n], is given

by:

xEDN[n] , λLc̃EDN[n] = (λLm) cEDN[n] + (λLb) ,

where the last equation follows from (6). From this, it can be seen that the ICS EDN

values can be converted to OPD via the following slope/intercept affine

transformation:

slope, scale factor: KEDN→OPD , λLm,

intercept, offset: OEDN→OPD , λLb .
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As TES is a quadrupole-type interferometer 9, the EP is four times smaller than the

OPD, meaning that the conversion from EDN to EP is described as follows:

slope, scale factor: KEDN→EP , (λLm) /4 ,

intercept, offset: OEDN→EP , (λLb) /4 .

Using the mean values obtained from the statistical analysis performed, we have

KEDN→EP = 9.14823× 10−5 cm (forward) , 9.14809× 10−5 cm (reverse) ,

OEDN→EP = −10.96085 cm (forward) , −15.17742 cm (reverse) .

These values can be compared with those obtained using the actual EP data from the

ICS. In Figure 15(a), we have plotted the raw ICS EP values observed as a function of

the EDN values observed for the forward scans, along with the residuals from a linear

regression (least squares affine transformation fit) in Figure 15(b). Similarly, we have

plotted these quantities for the reverse scans in Figure 16. From these figures, it can

be seen that the mapping between EP and EDN is well approximated using an affine

transformation, with the error appearing to be approximately due to quantization

error (as the residuals appear to be uniformly distributed).
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Figure 15. Analysis of ICS raw data outputs for the forward scans: (a) scatter plot of observed EP

values as a function of observed EDN values, (b) residuals from a linear regression of the EP as a

function of the EDN.

From the results of the EP/EDN linear regression analysis, the following was found:

slope, scale factor: K̂EDN→EP = 9.13242× 10−5 cm (forward) ,

intercept, offset: ÔEDN→EP = 5.03462× 10−7 cm (forward) ,

slope, scale factor: K̂EDN→EP = 9.13242× 10−5 cm (reverse) ,

intercept, offset: ÔEDN→EP = 2.44339× 10−6 cm (reverse) .

The slope scale factors obtained here using linear regression can be compared with

those obtained by relating the EDN to the EP using the FC-derived OPD as the

9Ibid.

18



1.1 1.2 1.3 1.4 1.5 1.6 1.7

105

10.5

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

(a)

1.1 1.2 1.3 1.4 1.5 1.6 1.7

105

-6

-4

-2

0

2

4

6
10-5

(b)

Figure 16. Analysis of ICS raw data outputs for the reverse scans: (a) scatter plot of observed EP

values as a function of observed EDN values, (b) residuals from a linear regression of the EP as a

function of the EDN.

ground truth. In particular, compare the following forward/reverse conversion scale

factors:

forward: KEDN→EP = 9.14823× 10−5 cm , K̂EDN→EP = 9.13242× 10−5 cm,

reverse: KEDN→EP = 9.14809× 10−5 cm , K̂EDN→EP = 9.13242× 10−5 cm.

As can be seen, the conversion factors are within about 0.17% of one another for both

the forward and reverse scan cases.

I. Summary of ICS Data Output Analysis

Combining the results of the analysis provided Sec. IV-E and IV-H, it follows that the

discrepancy between the OPD time series derived from the EP and FC can be on the

order of 10−3 cm. In other words, assuming the FC represents the ground truth with

respect to the OPD (which is approximately valid when the TES laser is operational),

the EP output can be off from the true OPD location on the order of 10−3 cm. This

made the problem of reconstructing spectra using SimCLK samples very challenging for

the case in which the TES laser was not operational, as only the EP could be relied

upon to provide any nominally accurate OPD location information.

V. Low Resolution of ICS OPD Measurements

In addition to there being a discrepancy between ICS OPD position measurements,

the rate at which ICS OPD locations are reported is significantly sub-sampled with

respect to the SimCLK IFGM sample rate. For example, from Figure 1, the ICS reports

OPD location information at a rate of FICS = 100 Hz, while for a 1B2 scan, for which
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the divisor factor L = 11 10, the SimCLK IFGM sample rate is approximately

FIFGM = 3.6 kHz.

To see why this can be problematic, note that in order to map the SimCLK sample

times to OPD locations, we need access to the true OPD time series x(t). Specifically,

if {tk}NIFGM

k=1 denotes the set of SimCLK IFGM sample times, then this set must be

mapped to the set of OPD locations {xk}NIFGM

k=1 using the relation xk = x(tk) for all k,

in order to form the vector x appearing in (4).

In practice, the ICS will output a set of time/OPD position tuples of the form

(t, x) ∈
{(

n−1
FICS

, x̃n

)}NICS

n=1
, where NICS is the number of ICS data capture samples for

a given scan, and x̃n denotes the n-th OPD position value (which could be from the

EP or FC outputs, but in truth may be something entirely different). From these knot

values
{(

n−1
FICS

, x̃n

)}NICS

n=1
, the OPD time series is constructed via interpolation, using

either a sinc, spline, or piecewise cubic Hermite interpolating polynomial (PCHIP)

type interpolant.

While a spectral analysis of the ICS OPD sample values carried out previously

suggested that the mirror movement should be sufficiently smooth to be reasonably

characterized by samples obtained at a rate of FICS = 100 Hz, minute high frequency

information on the mirror movement may have been lost by sampling at this low rate.

Loss of this high frequency information could be especially deleterious in light of the

fact that the IFGM waveforms are all bandpass sampled here.

As an example, consider the laser-derived 1B2 BB IFGM waveform shown in

Figure 17, where we have phase aligned the ZPD to occur at x = 0 and have zoomed

in to the region near the ZPD, where 99.9% of the IFGM energy is contained. In

addition to plotting the IFGM waveform, we have also plotted the SimCLK samples as

well as the samples corresponding to the ICS EP OPD locations for this scan. Here,

the SimCLK OPD locations were obtained by PCHIP interpolation of the ICS EP OPD

knot values.

From Figure 17, several important observations can be made. First, the samples

corresponding to the ICS EP OPD locations are spaced apart far enough away as to

entirely miss the ZPD portion of the IFGM waveform. From this, it is clear that

several of the most critical SimCLK IFGM samples rely heavily upon the fidelity of the

OPD time series representation in between the knot values
{(

n−1
FICS

, x̃n

)}NICS

n=1
. In this

case, there are approximately 35 SimCLK samples contained between adjacent ICS EP

OPD values. Thus, in addition to the discrepancy of OPD locations reported from the

ICS, such as that between the EP and FC outputs, the vast majority of SimCLK IFGM

samples must be derived by interpolation of the ICS OPD knot values, which may or

may not correspond to the actual OPD time series x(t).

10Ibid.
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Figure 17. Plot of 1B2 black-body (BB) IFGM wavform along with SimCLK samples and samples

corresponding to the ICS EP OPD locations. (Data taken from laser data capture - run ID: 27717,

scan ID: 01, pixel ID: 07.)

Another issue that is apparent from Figure 17 is the sensitivity of the SimCLK samples

to OPD location errors. This is due to the fact that the IFGM waveforms are

bandpass signals. For example, the SimCLK IFGM sample closest to the ZPD

corresponds to the OPD location x = 2.8× 10−4 cm with an amplitude value of

−3108. A slight perturbation of this sample to the ZPD at x = 0 would lead to an

amplitude value of 15825, which would dramatically affect spectrum reconstruction

performance if such position errors are not known and accommodated.

Heuristically, the sensitivity of the spectrum reconstruction problem to OPD locations

errors can be characterized by the center bandpass frequency of the IFGM waveform.

Referring to Figure 2, the center bandpass frequency νc is defined as follows:

νc ,

(
`− 1

2

)
ν0.

The reciprocal of this quantity, Xc , 1
νc

, which will be referred to here as the center

bandpass period, is an approximate measure of the period between local variations of

the IFGM waveform. For example, for 1B2, we have ` = 3 and ν0 = 427.144 cm−1 11,

from which we have

νc = 1067.86 cm−1 , Xc = 9.36452× 10−4 cm. (13)

11Ibid.
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Careful inspection of the IFGM waveform plotted in Figure 17 shows that the distance

between local peaks/troughs is about 9.717× 10−4 cm, a number which is very close

to the center bandpass period Xc.

A final point which should be made with respect to mapping SimCLK sample times to

OPD position locations regards the timing offset issue. The SimCLK IFGM and ICS

data files each contain a Temps atomique international (TAI) timestamp which

nominally corresponds to the first data sample, respectively. Alignment of these

timestamps is crucial for selecting the proper SimCLK sample times to feed into the

OPD time series for subsequent reconstruction. Unfortunately, the uncertainty of

these TAI timestamps with respect to the first data sample is not known exactly and

may be as large as a single ICS data sample step interval (i.e., 0.01 sec).

Given the inherent discrepancy between ICS OPD location outputs, coupled with the

low resolution of the OPD time series knot values supplied by the ICS, and the

unknown timing offset between the SimCLK IFGM and ICS data capture files, we opted

to consider spectrum reconstruction algorithms for which the OPD sample locations

were either unknown or imperfect.

VI. Tikhonov Regularized Spectrum Reconstruction with Unknown/Imperfect

Sample Locations

To overcome the ill-conditioning of the nominal spectrum reconstruction problem, we

considered adding a Tikhonov regularization term, which can incorporate a priori

knowledge of the spectrum to be reconstructed. Specifically, we focused on optimizing

the following objective, which is a function of both the OPD sample position vector x

and the spectrum vector s:

ξ(x, s) , ||A(x) s− i||2P + ||s− s0||2Q . (14)

Here, ||y||2R , y†Ry for R � 0 is the squared norm of y weighted by R, and we have

• P : NIFGM ×NIFGM mean squared error (MSE) weighting matrix which satisfies

P � 0,

• Q : 2Nspec × 2Nspec a priori (AP) spectral error weighting matrix which satisfies

Q � 0,

• s0 : 2Nspec × 1 AP spectrum error vector target value.

The Tikhonov regularization problem (TRP) in (14) has a Bayesian interpretation, in

which P and Q represent the inverse covariance matrices of i and s, respectively, and

s0 represents the mean or expected value of s.

The globally optimal value of the spectrum s for a fixed OPD position vector x is

given by the following [3].

sopt(x) =
(
A†(x) PA(x) + Q

)−1 (
A†(x) Pi + Qs0

)
. (15)

22



Substituting sopt(x) in (14) leads to a new objective that is only a function of x:

ζ(x) , ξ(x, sopt(x)) = i†P (i−A(x) sopt(x)) + s†0Q (s0 − sopt(x)) . (16)

The expression for the new TRP objective ζ(x) from above can be interpreted as the

sum of two weighted cross-correlation terms: one between the IFGM samples and the

reconstruction error, and the other between the AP spectrum and the spectrum

deviation from the AP value.

A. Gradient of the Spectrum-Optimized TRP Objective

A gradient descent algorithm was developed to minimize the spectrum-optimal TRP

objective from (16). To calculate the desired gradient ∇ζ(x), the differential of ζ(x),

namely d(ζ(x)), was first computed. From the differential d(ζ(x)), the gradient vector

∇ζ(x) can be obtained by using the expression

d(ζ(x)) = (dx)
T ∇ζ(x) , (17)

and extracting the coefficients of dxk for 1 ≤ k ≤ NIFGM.

Calculation of d(ζ(x)) was facilitated by exploiting the fact that for an invertible

matrix Z ∈ Cm×m, we have

d
(
Z−1

)
= −Z−1 (dZ) Z−1.

Using this result, if we define

εopt(x) , A(x) sopt(x)− i, (18)

to be the error vector obtained from the spectrum vector sopt(x) from (15), then, after

some algebraic manipulation, it can be shown that we have

d(ζ(x)) = ((d(A(x))) sopt(x))
†

(Pεopt(x)) + (Pεopt(x))
†

((d(A(x))) sopt(x)) . (19)

To simplify (19), define the vector a(x) ∈ R2Nspec as follows.

[a(x)]m ,

 2 cos(2πνmx) , 1 ≤ m ≤ Nspec,

−2 sin
(
2πνm−Nspec

x
)
, Nspec + 1 ≤ m ≤ 2Nspec.

Also, define the vector b(x) ∈ R2Nspec to be b(x) , a′(x). Then, we have

[b(x)]m =

 (−2 sin(2πνmx)) (2πνm) , 1 ≤ m ≤ Nspec,(
2 cos

(
2πνm−Nspec

x
)) (
−2πνm−Nspec

)
, Nspec + 1 ≤ m ≤ 2Nspec.

(20)

Hence, we have the following.

A(x) =


aT (x1)

· · ·

aT (xNIFGM
)

⇒ d(A(x)) =


(dx1) bT (x1)

· · ·

(dxNIFGM
) bT (xNIFGM

)

 .

23



Substituting this into (19), it can be shown that we have

d(ζ(x)) = 2

NIFGM∑
k=1

[Pεopt(x)]k bT (xk) sopt(x) (dxk) . (21)

Now define the matrix B(x) ∈ RNIFGM×2Nspec as follows:

B(x) ,


bT (x1)

· · ·

bT (xNIFGM
)

 .
Then, from (21) and (17), it can be shown that the gradient ∇ζ(x) is given by

∇ζ(x) = 2 [Pεopt(x)] ◦ [B(x) sopt(x)]︸ ︷︷ ︸
î(x)

, (22)

where ◦ denotes the Hadamard product (i.e., element-wise product). Here, î(x) can be

interpreted as a vector of samples of the derivative of the IFGM, namely I ′σ(x),

generated using the optimal spectrum sopt(x) as a seed or basis vector.

An overview of the algorithm used to compute the gradient of the spectrum-optimized

TRP objective ζ(x) from (16) is shown in Table 2. Note that computation of the

gradient vector ∇ζ(x) only requires one explicit calculation involving the inverse(
A†(x) PA(x) + Q

)−1
, which is required to compute sopt(x).

B. Addressing Unknown/Imperfect Sample Locations

The purpose of calculating the gradient ∇ζ(x) as outlined in Sec. VI-A was for use in

a gradient descent algorithm for locally minimizing the spectrum-optimal TRP

objective ζ(x) from (16). This objective ζ(x) represents a regularized MSE for the

spectrum reconstruction as a function of the OPD position vector x, in which the

spectrum has already been optimized as a function of x. As such, optimization of ζ(x)

is tantamount to carrying out spectrum reconstruction for the case of unknown OPD

sample locations. By using an estimate of the OPD position vector obtained from

interpolation of the ICS OPD time series data as an initial condition for the gradient

descent algorithm, imperfect OPD position information can be fed in at the start, in

hopes of correction as a result of the descent algorithm.

To properly address the generation of such an OPD position vector initial condition,

note that this may require truncation of the SimCLK IFGM samples to fit within the

time epoch spanned by the ICS OPD time series. This is illustrated in Figure 18,

where we have the following:

• tICS : ICS TAI timetag,

• tIFGM : SimCLK IFGM timetag,

• FICS : ICS data sampling frequency (nominally 100 Hz),
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Table 2. Overview of algorithm used to calculate the gradient vector of the spectrum-optimized TRP

objective ζ(x) from (16).

Algorithm to compute the gradient vector ∇ζ(x):

Inputs:

• i - vector of IFGM samples,

• x - vector of optical path difference (OPD) position estimates,

• ν ,
[
ν1 · · · νNspec

]
- row vector of wavenumbers corresponding to the OPD-

domain IFGM waveform DFS representation,

• k , 2πν - row vector of angular wavenumber values,

• P,Q, s0 - MSE/AP spectrum error weight matrices and AP spectrum target vec-

tor.

Methodology:

1. Form the nonuniform inverse discrete Fourier transform matrix A(x).

2. Calculate the spectrum vector sopt(x) =
(
A†(x) PA(x) + Q

)−1 (
A†(x) Pi + Qs0

)
as in (15).

3. Compute the error vector εopt(x) = A(x) sopt(x)− i as in (18).

4. Generate the derivative matrix B(x) using A(x) and k using (20).

5. Calculate the IFGM derivative vector î(x) = B(x) sopt(x) defined in (22).

6. Compute the gradient vector as ∇ζ(x) = 2 [Pεopt(x)] ◦ î(x) as in (22).

• FIFGM : SimCLK IFGM data sampling frequency (equal to FIFGM,nom/L as

shown in Figure 1),

• NICS : number of ICS OPD data samples.

Assuming that the nominal number of SimCLK IFGM samples is NIFGM,nom, the

SimCLK IFGM samples will correspond to the following set of times:{
tIFGM +

k − 1

FIFGM

}NIFGM,nom

k=1

. (23)

However, not all of these times may lie in the ICS time epoch described by the

following interval: [
tICS, tICS +

NICS − 1

FICS

]
. (24)

Any SimCLK IFGM samples with times from (23) which lie outside of the ICS epoch

given by (24) should be excised and not used for reconstruction. A set of SimCLK
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Figure 18. Interfacing the ICS OPD time series and the SimCLK IFGM data.

IFGM sample times that ensures that only the smallest number of samples is excised

is as follows: {
tIFGM +

k − 1

FIFGM

}kmax

k=kmin

,

where kmin and kmax are as shown in Figure 18 and given by

• kmin = max(1, dFIFGMτe+ 1),

• kmax = min
(
NIFGM,nom,

⌊
FIFGMτ + FIFGM

FICS
(NICS − 1)

⌋
+ 1
)

.

Here, τ , tICS − tIFGM is the time interval between the ICS and SimCLK IFGM

timetags.

C. Incorporating A Priori Spectrum Information to Aid in Reconstruction

Information from previous data captures when the TES laser was operational can be

used to formulate a priori statistics to feed into the reconstruction algorithm described

here. For a given uncalibrated spectrum type (target (TGT), black-body (BB), or cold

space (CS)) and for a given optical band of interest, the mean µs and covariance Σs of

the spectrum can be calculated using laser derived data close in time to the SimCLK

run under consideration. Referring back to the original TRP objective from (14), we

can incorporate µs and Σs into the reconstruction algorithm as follows:

s0 = µs , Q = Σ−1s . (25)

This approach may be reasonable for spectra that are known not to vary greatly as a

function of time, such as the uncalibrated BB, but it may be more susceptible to error
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for spectra that are expected to change with time, such as the uncalibrated TGT and

CS. Regardless, a priori statistics may be used to help steer the reconstruction toward

a nominally acceptable spectrum in an initial run of the algorithm until convergence,

after which the algorithm may be run again using the previously converged OPD

position vector as an initial condition, but without the a priori statistics being used.

For cases in which it may not be preferable to use a priori statistics to assist in

reconstruction, such as when we wish to discover unique features of the spectrum

under consideration, it is still worthwhile incorporating fundamental a priori

information in the reconstruction. For example, every IFGM waveform is intrinsically

an autocorrelation type signal [2], meaning that, when centered at the ZPD, will

ideally lead to a spectrum that is both real and non-negative. Furthermore, every

IFGM waveform captured from TES is filtered using an optical bandpass filter, for

which the band edges are all known in advance. Use of such a priori information in the

reconstruction problem will regularize the resulting spectrum, preventing

ill-conditioned solutions such as those seen in Sec. III from manifesting.

One way to incorporate this fundamental a priori information into the TRP

reconstruction algorithm is to select s0 and Q to penalize the out-of-band (OOB)

energy, as well as the energy of the imaginary part of the spectrum. Practically, this

requires that the IFGM has been approximately centered at the ZPD, which can be

done coarsely by centering the IFGM vector at the sample corresponding the

maximum absolute value, i.e., by having the maximum absolute value IFGM sample

correspond to x = 0. To penalize the OOB/imaginary energy of the spectrum, s0 and

Q can be chosen as follows:

s0 = 02Nspec×1 , Q = ΛOOB/I. (26)

Here, ΛOOB/I is a matrix that penalizes both the OOB/imaginary energy of the

spectrum and is given by

ΛOOB/I ,

 ΛOOB,R 0Nspec×Nspec

0Nspec×Nspec ΛI

 ,
where ΛOOB,R penalizes the real part of the OOB energy and is defined as

ΛOOB,R ,


INOOB,L

0NOOB,L×NIB
0NOOB,L×NOOB,U

0NIB×NOOB,L
0NIB×NIB

0NIB×NOOB,U

0NOOB,U×NOOB,L
0NOOB,U×NIB

INOOB,U

 ,
while ΛI penalizes the imaginary part of the spectrum energy and is given by

ΛI , INspec
.

The quantities NOOB,L, NIB, and NOOB,U denote the number of spectrum indices that

lie in the lower OOB, in-band (IB), and upper OOB regions, respectively.

It should be noted that while the choices of s0 and Q given by (26) penalize the

OOB/imaginary energy of the reconstructed spectrum, they do not necessarily

27



encourage solutions with non-negative real parts, as desired here. This is because this

additional constraint would make the original problem of minimizing ξ(x, s) from (14)

a quadratic programming (QP) problem [4] in terms of s, rendering joint optimization

of the spectrum s and position vector x as carried out in Sec. VI difficult if not

impossible. Instead, we relied on using (26) in hopes that a non-negative real spectrum

solution was obtained, or considered using (25) followed by (26) in order to yield a

spectrum solution which either entirely or approximately had a non-negative real part.

D. Spectrum Reconstruction Example Incorporating A Priori Information

We considered spectrum reconstruction for the following SimCLK IFGM data:

• Run ID: 27710,

• Spectrum Type: BB,

• Scan ID: 02,

• Filter ID: 1B2,

• Pixel ID: 07.

Before applying the data to the unknown sample location (USL) TRP spectrum

reconstruction (SR) algorithm described in Sec. VI-A, a smoothing pre-processing

stage in the IFGM raw spectral domain was carried out to remove spikes due to direct

current (DC) offset and ADC sampling artifacts. For this, we utilized a robust local

regression technique using weighted linear least squares and a 2nd degree polynomial

model to smooth out the spikes in the magnitude spectrum. The span of the

smoothing window in this case was set to 11 samples.

The EP output of the ICS data file corresponding to the SimCLK run was used to

generate an OPD time series, from which the initial position vector x0 was derived.

This was implemented as described below:

• The resulting OPD time series was generated by PCHIP interpolation of the

knot points.

• The TAI timetags from the ICS/SimCLK data files were set to correspond to the

first OPD time series sample and first IFGM sample, respectively.

• ICS/SimCLK timing was aligned, and the IFGM samples outside of the ICS epoch

were truncated, as described in Sec. VI-B (see Figure 18 for more details).

• The OPD time series positions corresponding to SimCLK sample times were taken

to be the initial position vector x0.

To reduce the computational overhead of the USL TRP algorithm, we carried out

simulations on an IFGM data window of length NIFGM = 1024 centered near the ZPD.
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Specifically, this meant that the IFGM was truncated to 1024 samples with the

maximum absolute value IFGM sample occurring at one of the middle points of the

window (in this case, the 513-th sample). To make the reconstruction problem

well-posed and full, we took Nspec = 512.

For the USL TRP algorithm, the parameters were chosen to minimize a convex

combination [4] of MSE and OOB/imaginary energy. To that end, a trade-off

parameter θ satisfying θ ∈ [0, 1] was considered. Specifically, P, Q, and s0 were chosen

as follows:

• P = θINIFGM ,

• Q = (1− θ) ΛOOB/I,

• s0 = 02Nspec×1.

We implemented a gradient descent algorithm on the position vector x as described in

Table 2 using a constant step-size γ. From the evolution of this algorithm, a refined

OPD time series was formulated based on sample times corresponding to SimCLK

IFGM values and the USL TRP spectrum reconstruction algorithm position vector

output x. The specific USL TRP parameters chosen here were as follows:

• θ = 0.01,

• OOB lower/upper limit wavenumber values used were νOOB,L = 900 cm−1 and

νOOB,U = 1210 cm−1, respectively,

• γ = 10−14,

• number of iterations Niter considered was Niter = 30000.

Plots of the magnitude/phase of the initial and final spectra output from the USL

TRP SR algorithm are shown in Figure 19(a) and (b), respectively, along with the raw

spectrum of the IFGM sample vector. Compare these results with the expected 1B2

BB spectrum magnitude and phase shown in Figure 20(a) and (b), respectively.

As can be seen, the reconstructed spectrum bears some resemblance to the desired BB

shape, although the reconstruction is arguably unsatisfactory. In particular, though,

note that the magnitudes for the OOB regions, due to the optical bandpass filter, are

suppressed as desired. Furthermore, the notch in the 1B2 BB spectrum near

ν = 1115 cm−1 (see Figure 20(a)) can be seen to manifest as shown in the final

spectrum magnitude shown in Figure 19(a). From Figure 19(b), it is clear that the

output spectrum has a phase that is either approximately 0 or ±π, meaning that the

algorithm is successfully suppressing the imaginary energy of the spectrum as desired.

Comparison of Figure 19(b) with Figure 20(b) shows relatively good agreement in the

IB region. From Figure 19(b), it can be concluded that the algorithm can be used for

phase alignment to the ZPD.
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Figure 19. Evolution of the spectrum from the unknown sample location (USL) Tikhonov regularization

problem (TRP) spectrum reconstruction (SR) algorithm: (a) magnitude spectrum and (b) phase

spectrum.
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Figure 20. Expected 1B2 BB spectrum: (a) magnitude spectrum and (b) phase spectrum. (Data taken

from laser data capture - run ID: 27717, scan ID: 01, pixel ID: 07.)

Using the OPD positions as estimated by the USL TRP algorithm to generate OPD

time series based on the SimCLK IFGM sample times yielded the velocity and residual

position series shown in Figure 21(a) and (b), respectively. From this figure, it is

apparent that the velocity profile yielded erratic behavior, while the residual position

appeared well behaved. One likely reason for the erratic behavior in the velocity from

Figure 21(a) is that perturbations in the OPD position vector x as a result of the

algorithm occur over the SimCLK IFGM sample time interval, which is much smaller

than the ICS sample time interval, by over an order of magnitude. As such, this

suggests that the resulting velocity profile of the OPD time series generated by the

algorithm may not be a useful measure to characterize the ability of the algorithm to

yield a physically realizable OPD time series. A better measure to gauge a physically

realizable OPD time series would be the residual position, as shown in Figure 21(b).
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Figure 21. OPD time series generated using the position vector estimates returned from the USL TRP

algorithm along with the SimCLK IFGM sample times: (a) velocity and (b) residual position.

From this, it can be seen that an OPD position vector change leading to a virtually

indistinguishable residual position time series can yield a vastly different spectrum, as

evidenced in Figure 19.

Because of the similarity between the initial and final USL TRP algorithm OPD

residual position time series, a plot of the difference between the final and initial OPD

time series is given in Figure 22, in order to highlight the evolution of the algorithm.

From this figure, several interesting observations can be made. First, most of the

noticeable content of the difference signal occurs near the middle of the observation

epoch, which was chosen to correspond roughly with the position of the ZPD. This is

in line with intuition, as most of the corrections in the reconstruction of the spectrum

should occur where the energy of the IFGM is most concentrated, which is the ZPD

region for uncalibrated BB spectra (see Figure 17).

Another observation which can be made from Figure 22 is that the magnitude of the

OPD position vector perturbations is on the order of several microns. Specifically, the

range of perturbations is approximately 5× 10−4 cm, which is roughly half of the

period of the local variations of the IFGM waveform of 9.36452× 10−4 cm as given in

(13). Note that this is consistent with the observation from Figure 17 that any

perturbation of the sample positions near the ZPD that is on the order of microns can

lead to vastly different IFGM amplitude values.

Finally, the evolution of the USL TRP cost function ζ(x) given in (16) across

iterations is shown in Figure 23. As can be seen, the cost function decreases

monotonically at each iteration, due to the small step-size value of γ = 10−14 chosen

here. Furthermore, it can be see that after Niter = 30000 iterations, the TRP cost

function ζ(x) appears to have approached an asymptotic value, suggesting that the

algorithm has approximately converged.
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Figure 22. Difference between final and initial OPD time series obtained via the USL TRP SR

algorithm.

VII. Unknown/Imperfect Sample Location Power Spectral Density Spectrum

Reconstruction

In theory, the IFGM waveform I(x) introduced in Sec. II should be an autocorrelation

function [2], as it measures how much the light intensity of a tropospheric source

interferes with itself as a function of the OPD. As discussed below, this can aid in

making the spectrum reconstruction problem more well-conditioned, as it implies that

the IFGM signal is Hermitian symmetric, i.e., I(−x) = I∗(x) for all x [2]. (Specifically,

as I(x) is real here, Hermitian symmetry implies that the IFGM waveform is even, i.e.,

I(−x) = I(x) for all x.) A necessary and sufficient condition for I(x) to be an

autocorrelation function is that its Fourier transform S(ν) is non-negative for all ν, i.e.,

S(ν) ≥ 0 for all ν [2]. In this case, S(ν) is called a power spectral density (PSD) [2].

In accordance with the DFS representation of Iσ(x) from Sec. II, this implies that I(x)

can be modeled by a DFS representation of the form

I(x) =

Nspec∑
m=1

2 cos(2πνmx) sm, (27)

where the set of wavenumbers {νm}
Nspec

m=1 is as given in (1). With this representation,

I(x) is an autocorrelation function if and only if sm ≥ 0 for all m. A more compact

form of I(x) from (27) is given by

I(x) = cT (x) s, (28)
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Figure 23. Evolution of the USL TRP SR cost function ζ(x) from (16) with iteration index. (θ = 0.01,

γ = 10−14, Niter = 30000)

where we have

c(x) ,


2 cos(2πν1x)

· · ·

2 cos
(
2πνNspec

x
)
 ∈ RNspec , s ,


s1

· · ·

sNspec

 ∈ RNspec . (29)

To use the autocorrelation representation of I(x) in (28) for spectrum reconstruction,

from the definitions given in (29), it follows that we must enforce the constraint that

s � 0 (i.e., we must constrain s to be component-wise non-negative) [4].

A. Objective for USL PSD Spectrum Reconstruction

Given a set of SimCLK IFGM samples {Ik}NIFGM

k=1 , and using the IFGM waveform

representation from (28), one suitable cost function to minimize in the

unknown/imperfect sample location scenario is the residual sum of squares (RSS) plus

a logarithmic barrier penalty on adjacent sample spacings [5]:

ξ(x, s) , ||i−C(x) s||2 + µ

NIFGM∑
k=2

P (xk − xk−1) , (30)
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where we have

[i]k , Ik , 1 ≤ k ≤ NIFGM ,

[x]k , xk , 1 ≤ k ≤ NIFGM ,

[C(x)]k,m ,
[
cT (xk)

]
m

= 2 cos(2πνmxk) , 1 ≤ k ≤ NIFGM , 1 ≤ m ≤ Nspec ,

[s]m , sm , 1 ≤ m ≤ Nspec ,

P (∆x) , ∆x− log(∆x− α)− log(β −∆x) .

Here, the parameters µ, α, and β represent the following:

• µ - weighting parameter for the logarithmic barrier penalty term on adjacent

sample spacings,

• α, β - lower/upper limit, respectively, on any adjacent sample spacing ∆x (i.e.,

α < ∆x < β).

The RSS component in ξ(x, s) from (30) is a model fitting term, while the logarithmic

barrier penalty term can be used to ensure that physically realizable OPD time series

solutions will result. Use of this type of penalty term for spectrum reconstruction in

the case of unknown sample locations was first considered by Browning in [5].

As mentioned earlier, one major advantage to modeling I(x) as an autocorrelation

function (or equivalently S(ν) as a PSD) is that it makes the reconstruction problem

more well-conditioned. As opposed to nonuniform sampling near the Nyquist rate,

ensuring I(x) is even means that this sampling will occur at approximately twice the

Nyquist rate. This well-conditioning manifests in the reduced condition number [3] of

the matrix C(x) from (30) compared with the matrix A(x) from (4). (Recall that the

condition number of any matrix is defined to be the ratio of the maximum singular

value to the minimum singular value [3].)

An example of this is shown in Figure 24, where we have plotted the singular values of

C(x) using the same data used to form the matrix A(x) in Figure 3. In this case,

C(x) was found to be of full rank. Specifically, for the same set of data, the condition

number for C(x) was 20.9918, compared with that of A(x), which was 2.8644× 1012.

It should be noted that the benefit of modeling I(x) as an autocorrelation function, in

terms of making the spectrum reconstruction problem more well-conditioned, comes at

the cost of ensuring that s � 0.

B. Approach for USL PSD Cost Function Optimization

As joint optimization of the position and spectrum vectors (x and s, respectively) in

the objective from (30) appears intractable, in contrast to the Tikhonov regularized

problem from Sec. VI, the method considered here is to optimize each, assuming the

other is fixed. This approach is essentially the alternating least squares (ALS) method

considered by Browning [5].
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Figure 24. Singular values of the matrix C(x) for a 1B2 black-body (BB) scan. (NIFGM = 14085,

Nspec = 6656)

To that end, we define the following quantities:

• ζs(x) , ξ(x, s) - cost function with variable x and fixed s,

• ηx(s) , ξ(x, s) - cost function with variable s and fixed x.

The problem of minimizing the objective ζs(x) is non-linear and non-convex [4] in

terms of x and is optimized here via gradient descent. Subject to the constraint s � 0,

the problem of optimizing ηx(s) can be posed as a quadratic programming (QP)

problem [4], which is non-linear, but convex. Such problems can be optimized globally

using interior-point methods [4]. For example, in MATLAB, such problems, along

with several other convex optimization problems, can be solved using the freely

available add-on CVX [6].

With x and s optimized as described above, the process is repeated until convergence

occurs. In all cases considered here, convergence was always achieved and conjectured

to correspond to a locally optimal solution.

1. USL PSD Cost Function Position Gradient Vector

The gradient of ζs(x), namely ∇ζs(x), can be shown to be the following:

[∇ζs(x)]k =



[r(x) ◦ h(x)]k + µ
[
−1 + 1

xk+1−xk−α −
1

β−xk+1+xk

]
, k = 1,

[r(x) ◦ h(x)]k + µ
[

1
xk+1−xk−α −

1
β−xk+1+xk

− 1
xk−xk−1−α + 1

β−xk+xk−1

] , 2 ≤ k ≤ NIFGM − 1,

[r(x) ◦ h(x)]k + µ
[
1− 1

xk−xk−1−α + 1
β−xk+xk−1

]
, k = NIFGM.
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Here, we have

• r(x) , i−C(x) s : residual vector,

• h(x) , D(x) s : scaled IFGM derivative vector,

• [D(x)]k,m , 8πνm sin(2πνmxk) : (k,m)-th element of the derivative matrix

D(x),

• ◦ : Hadamard product operator (i.e., element-wise product).

For gradient descent, given a current position/spectrum vector pair (x, s), a position

vector update x+ is calculated as follows:

x+ = x− γ∇ζs(x) ,

where γ is the step-size parameter. Here, γ was set via backtracking line search (BLS)

[4] based on the Armijo-Goldstein condition, and to ensure that the adjacent spacing

condition α < ∆x < β was not violated.

2. USL PSD Cost Function Quadratic Programming Problem for the Spectrum Vector

For fixed position vector x, the problem of finding the spectrum vector s can be

expressed as:

minimize ηx(s) = sTQ(x) s + pT (x) s + c(x) ,

subject to s � 0.
(31)

Here, we have the following:

• Q(x) , CT (x) C(x) (which satisfies Q(x) � 0, i.e., Q(x) is positive

semidefinite),

• p(x) , −2CT (x) i,

• c(x) , iT i + µ

NIFGM∑
k=2

P (xk − xk−1).

Note that (31) is an instance of the general convex quadratic programming (QP)

problem described below in Table 3. As stated earlier, the convex QP for finding s can

be optimized globally using CVX in MATLAB [6].

C. Algorithm for Solving the USL PSD Spectrum Reconstruction Problem

The methodology behind minimizing the cost function objective ξ(x, s) given in (30) is

shown below in Table 4. Regarding this approach, care must be taken in terms of

selecting x(1) so that the ZPD location of the IFGM waveform I(x) corresponds

approximately to x = 0. Provided the cost ξ
(
x(p+1), s(p)

)
from Step 1 of Table 4

decreases, then ξ
(
x(p+1), s(p+1)

)
is non-increasing and bounded below (by zero), and

so converges [4] (possibly to a local minimum).
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Table 3. General form of a convex quadratic programming (QP) problem [4].

Convex Quadratic Programming (QP) Problem:

minimize (1/2) yTPy + qTy + r,

subject to Gy � h,

Ay = b,

where P � 0.

Table 4. Overview of alternating position/spectrum vector optimization algorithm used to minimize the

cost function ξ(x, s) from (30).

Unknown/Imperfect Sample Location PSD Spectrum Reconstruction

Algorithm:

Let x(p), s(p), and γ(p) denote the p-th iteration of x, s, from Sec. VII-A and γ from

Sec. VII-B.1, respectively, for p ≥ 1.

Initialization:

• Set x(1) to some value (say, based on an ICS OPD time series). Compute s(1) by

solving the QP corresponding to ηx(1)(s) as in Sec. VII-B.2. Calculate ξ
(
x(1), s(1)

)
and store x(1), s(1), and ξ

(
x(1), s(1)

)
for future reference.

Iteration: For p ≥ 1, do the following:

1. Position Vector Update (Gradient Descent) - Calculate x(p+1) = x(p) −
γ(p)∇ζs(p)

(
x(p)

)
as described in Sec. VII-B.1, where the step-size γ(p) is selected

via BLS and to ensure α < ∆x < β.

2. Spectrum Vector Update (Quadratic Programming) - Calculate s(p+1) by solving

the QP corresponding to ηx(p+1)(s) as described in Sec. VII-B.2.

3. Store Diagnostics - Compute ξ
(
x(p+1), s(p+1)

)
. Store x(p+1), s(p+1),

ξ
(
x(p+1), s(p+1)

)
, ∇ζs(p)

(
x(p)

)
, and γ(p) for future reference. Increment p to

p← p+ 1 and go to Step 1.

D. Spectrum Reconstruction Example

The unknown/imperfect sample location PSD spectrum reconstruction algorithm was

tested using the same setup considered in Sec. VI-D. In particular, the following was

used here.

• Considered spectrum reconstruction for the following SimCLK IFGM data:

– Run ID: 27710, Spectrum Type: BB, Scan ID: 02, Filter ID: 1B2, Pixel ID:

07.

– Assumed TAI timetag from SimCLK data file corresponded to the first

IFGM sample.
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• Carried out smoothing pre-processing stage in the IFGM raw spectral domain to

remove spikes due to DC offset and ADC sampling artifacts.

– Utilized a robust variant of local regression using weighted linear least

squares and a 2nd-degree polynomial model to smooth out spikes in the

magnitude spectrum.

– Set the span of the smoothing window to 11 samples.

• Used the EP output of the ICS data file to generate an OPD time series, from

which the initial position vector was derived.

– Resulting OPD time series generated by piecewise PCHIP interpolation of

the knot points.

– Assumed TAI timetag from ICS data file corresponded to first OPD time

series sample.

– Aligned ICS/SimCLK timing and truncated IFGM samples outside of ICS

epoch as described in Figure 18.

– Took OPD time series positions corresponding to the SimCLK sample times

to be the initial position vector x.

Regarding the IFGM data window and number of spectral values to use, the following

was considered here.

• Simulations were carried out on an IFGM data window of length NIFGM = 1024

centered near the ZPD.

• The largest absolute value IFGM sample was made to correspond to the location

x = 0.

• Took Nspec = 512 in order to make the reconstruction problem well posed and

full.

For the unknown/imperfect sample location PSD spectrum reconstruction algorithm,

the following parameter values were chosen.

• µ = 100,

• α = vLBFIFGM, β = vUBFIFGM, where

– vLB = −5 cm/sec was the OPD velocity lower bound,

– vUB = −3.2 cm/sec was the OPD velocity upper bound,

– FIFGM was the SimCLK IFGM sample rate.

• γnom = 10−4 (BLS nominal step-size parameter [4]),

• c = 1/2 (BLS nominal relative increment level control parameter [4]),

• τ = 1/2 (BLS step-size attenuation factor control parameter [4]).
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Plots of the magnitude/phase of the initial and final spectra output from the USL

PSD SR algorithm are shown in Figure 25(a) and (b), respectively, along with the raw

spectrum of the IFGM sample vector. These results should be compared with the

expected 1B2 BB spectrum magnitude and phase shown in Figure 20(a) and (b),

respectively.
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Figure 25. Evolution of the spectrum from the unknown sample location (USL) power spectral density

(PSD) spectrum reconstruction (SR) algorithm: (a) magnitude spectrum and (b) phase spectrum.

As is evident from Figures 25 and 20, while the reconstructed spectrum bears some

resemblance to the desired BB shape, the reconstruction is arguably unsatisfactory.

However, the algorithm can be seen to be learning to suppress the OOB regions due to

the optical bandpass filter. In addition, the known notch in the 1B2 BB spectrum near

ν = 1120 cm−1 may be manifesting as well. Finally, as desired, the output spectrum

has exactly zero phase and thus is non-negative, meaning it is a PSD.

Using the OPD positions estimated by the USL PSD algorithm, an OPD time series

based on the SimCLK IFGM sample times yielded the velocity and residual position

series shown in Figure 26(a) and (b), respectively. As can be seen, the velocity time

series was relatively smooth, outside of an isolated erratic region near the occurrence

of the ZPD. While difficult to visualize from Figure 26(a), the velocity profile just

barely missed the OPD velocity upper bound of vUB = −3.2 cm/sec. In contrast to

the velocity, the residual position from Figure 26(b) is very smooth and only exhibits

slight perturbations near the ZPD leading to velocity spikes.

A plot of the difference between the final and initial OPD time series is given in

Figure 27, in order to highlight the evolution of the algorithm. As with the case for

the USL TRP algorithm, it can be seen from this figure that most of the activity in

the difference signal occurred near the middle of the observation epoch, corresponding

approximately with the position of the ZPD. Also, the difference between final and

initial position vectors is on the order of microns, which emphasizes the fact that small

changes in the position vector can lead to large differences in the output reconstructed

spectrum.
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Figure 26. OPD time series generated using the position vector estimates returned from the USL PSD

algorithm along with the SimCLK IFGM sample times: (a) velocity and (b) residual position.
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Figure 27. Difference between final and initial OPD time series obtained via the USL PSD SR

algorithm.

Finally, the evolution of the USL PSD SR cost function ξ(x, s) given in (30) and the

step-size parameter γ from Sec. VII-B.1 across iterations is shown in Figure 28(a) and

(b), respectively. As can be seen from Figure 28(a), the cost function decreased

monotonically at each iteration, which is a consequence of the BLS taken in the

position vector gradient descent stage and the fact that the QP used to obtain the

spectrum vector was solved globally (see Table 4). Also, it can be seen that after

about 40 iterations, the algorithm converged to a solution. From Figure 28(b), it can

be seen that the step-size parameter γ changed values most dramatically at iterations
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Figure 28. Evolution of the USL PSD SR algorithm with iteration index: (a) cost function ξ(x, s) from

(30) and (b) step-size parameter γ from Sec. VII-B.1. (Niter = 100, γnom = 10−4, c = 1/2, τ = 1/2.)

corresponding to abrupt changes in the objective function seen in Figure 28(a). This

may suggest that the initial step-size value of 10−4 was overly large and that the

algorithm may have jumped between local extrema before converging on one. When

the algorithm finally converged, the step-size oscillated between 3-5× 10−8,

corresponding to small values of γ.

It should be noted that the USL PSD SR algorithm required a much longer runtime

than the USL TRP SR algorithm described in Sec. VI. This was due to the fact that

solving the QP from (31) to get the spectrum vector s was much higher in

computational complexity than solving the normal equations in (15) to get sopt(x).

VIII. Concluding Remarks

Several of the pitfalls encountered with respect to solving the spectrum reconstruction

problem for TES were brought to light in this article. In particular, the following

issues made reconstructing spectra challenging:

• Ill-conditioning of the reconstruction problem due to nonuniform sampling near

the Nyquist rate: This resulted in some samples being too close to one another,

yielding overly correlated information, while other samples were too far apart

from one another, resulting in missing information. It manifested in matrices

used for reconstruction being effectively rank deficient.

• Discrepancies in the ICS mirror position outputs: Differences in OPD positions

corresponding to fringe counts and the TES mirror motor encoder were on the

order of 10−3 cm. Such values were large enough to correspond to vastly

different values of the underlying IFGM waveform.

• Low resolution of the ICS measurements: Position data from the ICS was only

output at a rate of 100 Hz, which was over an order of magnitude below the

sample rate of the IFGM measurements (typically on the order of several kHz).
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Interpolation was used to obtain positions in between the ICS measurements,

but there is no guarantee that such an approach leads to accurate OPD values.

These matters are best exemplified in Figure 17. There we see the sensitivity of the

spectrum reconstruction problem with respect to sample position errors, due in part to

the fact that all IFGM waveforms relevant to TES are real, bandpass signals. As is

evident from Figure 17, any errors in position locations could result in very different

IFGM values. Conversely, IFGM values, such as those provided by the SimCLK module,

can lead to highly erroneous spectra in the presence of OPD sample location errors.

These observations served as the impetus for investigating reconstruction algorithms

which did not require explicit knowledge of the sample positions. The two most

promising of such algorithms, which were described in this article, were the following:

• Unknown sample location (USL) Tikhonov regularized problem (TRP) spectrum

reconstruction (SR): This algorithm sought to incorporate a priori knowledge of

the spectrum to be reconstructed to better condition the reconstruction problem.

The spectrum and position vectors were able to be jointly optimized locally

using a gradient descent approach on the position vector.

• Unknown sample location (USL) power spectral density (PSD) spectrum

reconstruction (SR): This algorithm sought to exploit the fact that all of the

IFGM waveforms under consideration are inherently autocorrelation functions,

in order to yield a more well-conditioned reconstruction problem. The spectrum

and position vectors were alternately optimized by solving a convex quadratic

programming (QP) problem to globally optimize the spectrum, followed by a

gradient descent approach to locally optimize the position.

Unfortunately, neither of these algorithms were found to yield satisfactory

reconstruction results, as evidenced in Secs. VI-D and VII-D. While both algorithms

exhibited the behaviors that were expected, they both converged to local extrema that

were far from the desired outcome. Furthermore, they resulted in OPD time series

trajectories which appeared erratic in the neighborhood of the estimated ZPD location.

One avenue for future analysis would be to incorporate more sophisticated a priori

information in the USL TRP SR algorithm. For example, using data collected when

the TES laser was operational, desired spectrum mean/covariance values could be

computed and used. Such an approach would be most appropriate for black-body

(BB) spectra, which are known to be relatively stable across time and only vary slowly

over the course of days 12. With proper weighting, this could be used to infer OPD

time series trajectories, which in turn could be used for reconstruction of target

(TGT) and cold space (CS) spectra. Such reconstruction requires that the OPD time

series does not evolve appreciably with time, which may be the case as suggested by

the ICS data analysis carried out in Sec. IV.

12Ibid.
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