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We have investigated a commund detector in-lock monitoring strategy that uses
N estimates of (SNR)"* each composed of M samples from both data and error
channel outputs. The detector recognizes only two states (in-lock and out-of-lock)
and indicates state transition when N successive (SNR)/* estimates violate a
threshold. We give the probabilities of indicating in-lock given the detector is
out-of-lock and out-of-lock given in-lock as a function of threshold for
(NM) = (1,10), (2,5), (5,2), (10,1). From these probabilities a threshold compatible
with design requirements can be determined.

I. Introduction

A command detector being developed for NASA uses
signal-to-noise ratio (SNR) estimates to monitor opera-
tions of the detector. An important monitoring function
is to determine whether or not the detector is in-lock.
The purpose of this article is to investigate how well the
monitoring function can be performed using a particular
set of strategies that can be relatively easily implemented.

In Section II we will detail the particular set of strate-
gies we wish to pursue. We will measure their per-
formance in terms of the conditioned probabilities of
indicating in-lock, given the detector is out-of-lock, and
indicating out-of-lock, given in-lock. In Section III, we
will develop expressions for those conditional probabili-
ties whose evaluation requires numerical integration. In
Section IV, we will present the results of the numerical
evaluations for strategies that appear most relevant to
present design plans for the command detector.
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Il. Statement of Command Detector Strategy

In a previous DSN article (Ref. 1), we analyzed a
method for estimating the square root of the SNR rather
than the SNR itself. This method involved obtaining
(SNR)*/2 from the ratio of an average of M absolute values
of data (in-phase) channel integrated outputs to an aver-
age of M absolute values of error (quadrature) channel
integrated outputs. The strategy for using this (SNR)*/*
estimate as an in-lock indicator is the following: We con-
sider the command detector as being in one of two states:
in-lock or out-of-lock. Initially, before the command is
acquired, the detector is out-of-lock. We define transition
to the in-lock state as occurring after N consecutive inde-
pendent (SNR)? estimates are each above a threshold
T,. Once the in-lock state is reached, we define transition
to the out-of-lock state as occurring after N consecutive
independent (SNR)'/? estimates are each below a thresh-
old T,. Since NM samples of both data and error channels
are required for the in-lock monitoring function, we will
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consider schemes for which the product of N and M is
constant. The performance of a set with constant NM will
be determined by considering the conditional probabili-
ties of indicating in-lock, given out-of-lock, and of
indicating out-of-lock, given in-lock.

lIl. Derivation of Expressions for the
Conditional Probabilities

A. Expression for a Useful Probability

The following have been demonstrated in a previous
DSN Progress Report (Ref. 1). The in-phase channel inte-
grated output samples X; are independent random vari-
ables identically distributed with probability density

g (2 e - 4m]
Px(a) =

0, a<0
(1)

where A is the signal amplitude, T is the integration time,
and o* = N,T/2 with N,/2 the two-sided power spectral
noise density. The error channel integrated output sam-
ples Y; likewise are independent identically distributed
random variables with probability density given by
Eq. (1) with A = 0. The actual SNR is

SNR = % (AT/0)? @)

>

My(a) = {lexp< %)[exp(i%)erfc(——%+ \;;M)—l—exp(

where erfc (x) is the complement of the error function:
erfc(x) =1 — —/ e du.
We obtain Ma(a) from M,(a) when A = 0, so

Ma(a) = {exp( 2;;:>erfc<' \/;;W)}u (8)

With a change of variable u = [(1 + =T3%)/2M]*/2¢Y and
using the symmetry relations of erfc (x) (Ref. 2) we have,
from Eq. (6):
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and the command detector estimate W of (SNR)% is

For the present investigation we need to calculate the
probability that W < T, when actual SNR is, say, S3.
Define random variables v,A equal to

1 M
MZX'I',’

i=1

o
ZY

1=1

|~

respectively. Then, the needed probability P(M,T,,S3) is

Z—) (4)

where the §-function, which is one if its argument is
greater or equal to zero, and zero otherwise, has the
integral representation

P(M,T,,53) =ffda, da, Py(a,) Pa(a,) 6 (\/; T, —

: 1 ([~ dY .
0= tim =5 [ yrEee#n  ©
Substituting this into Eq. (3) and interchanging order of
integration gives

1 [—= dY
2) — —_———
P(M,T,,S3) = fim YT

€ 0 Qi

T MUY) [Ma(Vr ToY)]*
(6)

where My(a), Ma(a) are the characteristic functions of
v,A respectively. Using Eq. (1) and the independence of

the X;, we have
,ATa ) rfc< AT 4 oo )]}”
V2  V2M

™

P(M,T,,S3) —— —/ ———eXP( w)
X Im[g(u) erfc (—iVmy Tou)]¥ 9)

where I'm means “imaginary part of,” y = [M(1 + =T3)]"2,
and we have defined the function g(u):

g(u)==exp (—i2ySou) — i
X Im[exp (—i2ySou) erfc (S, — iyu)] (10)
Eqs. (9) and (10) use S3 for the actual SNR = % (AT/0)>
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B. Probabilities Involved in In-Lock Indicator
Performance

In Eq. (9) we give an expression for the probability
that the (SNR)/2 estimate W is less than T, given actual
SNR equals S3. To evaluate the schemes proposed in
Section II we need to relate actual SNR to the in-lock and
out-of-lock states. We will assume the in-lock state exists
when actual SNR is above command detector design
point of $3 = 11.22 (corresponding to 10.5 dB) and the
out-of-lock state exists when actual SNR equals S = 0.
With these assumptions, we have for the conditional
probability of indicating in-lock given out-of-lock:

P(IN|OUT) = [1 — P(M,T,,0)]* (11)

and for the conditional probability of indicating out-of-
lock given in-lock:

P(OUT|IN) < [P(M,T,,11.22)]% (12)

IV. Results and Conclusions

Present design plans for the command detector commit
10 data and error output samples for in-lock indication
monitoring. This means the product NM must be 10.
There are, of course, four ways to accomplish this:
(N, M) = (1,10), (2,5), (5,2), and (10,1). We wish, there-
fore, to have the probabilities of Eqs. (11) and (12) for
these four possibilities as a function of T,.

The required probabilities require numerical evalua-
tion of Eq. (9). While conceptually straightforward, this
integration requires some care, since the integrand is
oscillatory, so the integral achieves a small value from
cancelling contributions. For example, Eq. (9) immedi-
ately suggests Hermite integration. However, the re-

quired values of N and M cause oscillations of the
integrand too rapid to be reliably approximated by
Hermite polynomials of degree < 20, which is the high-
est degree with tabulated roots and weights (Ref. 3).
Instead, we used the transformation 4 = tan™'», divided
the interval [0, =/2] into equal intervals, and used 8-point
Gaussian quadrature in each interval. The value of the
integrals was insensitive to the number of partitioning
intervals when the number exceeded 175. For the erfc
functions of complex argument we used approximations
depending upon the magnitude of the argument"* to insure
accuracy and rapid convergence of the summations in-
volved. Since we could calculate analytically

2
P1,T,0) = - tan~! (\/x T,),

we checked the numerical integration in this case and
obtained agreement to 5 significant decimal figures for
P(IN|OUT) = [1 — P(1,T,,0)]*.

The results of numerical evaluation of Egs. (11) and
(12) for the four possibilities as functions of T3 (the
equivalent threshold SNR) are presented in Fig. 1. From
these curves one can establish a threshold to meet design
requirements, If, for example, the requirements are
P(IN|OUT) < 10® and P(OUT|IN) < 10-°, then we see
that (N,M) = (5,2) with 1 < T3 < 1.7 will be adequate.

1When the complex argument of the erfc-function had a squared
magnitude less than 26 we used the approximation of Eq. 7.1.29
on p. 299 of Ref. 2. When the squared magnitude was greater than
26 we utilized the relation between the erfc-function and the con-
fluent hypergeometric function to develop a 10-term asymptotic
expansion for erfc derived from Eq. 18.5.1 of Ref. 2. The value 26
was chosen to insure rapid convergence of summations involved.
Both representations of erfc agreed to 5 significant decimal figures-
for squared magnitudes between 20 and 26.

References

1. Lipes, Richard G., “Analysis of Command Detector Signal-to-Noise Estimator,”
in The Deep Space Network Progress Report 42-31, pp. 75-83, Jet Propulsion
Laboratory, Pasadena, Calif., Feb. 15, 1976.

2. Abramowitz, M., and Stegun, I., Handbook of Mathematical Functions,

National Bureau of Standards, p. 297.

3. Krylov, V. 1., Approximate Calculations of Integrals, Macmillan Co., New York,

1962; also Ref. 2, p. 924.

72

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32



0 T T T 0, 10y |
2, 5)_1
=2 (5, 2
\\
s N NI 10, 1)
= b N AL T T e T T e
2 e e PR V)
S -0 A/ T .. T (2, 54
S ) ST T
s | NS T T (5, 2
o -8~ (/S Tl N
3 -y, S T (o, 1
- .10 —
P(OUT/IN)
------ P(IN/OUT)
2} ( _
~14 | | 1
0 2 4 ) 8 10
2
o

Fig. 1. Plot of conditional probabilities as a function of threshold
for strategies (N,M) = (1,10), (2,5), (5,2), (10,1). N is the num-
ber of estimates of (SNR)*/2 and M is the number of samples in
each estimate.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-32



