Mission Applications of the Dual Spacecraft Tracking Technique

C. C. Chao and J. P. McDanell
Navigation Systems Section

This article discusses the potential application of the dual spacecraft tracking technique to the Voyager mission. First, the concept and technology status is reviewed briefly. Then results pertaining to the JSX-Uranus option Saturn encounter, where potential navigation benefits are greatest, are presented. Results for a Jupiter encounter demonstration also are given and, finally, software modifications and tracking requirements are discussed.

I. The Concept

When two interplanetary spacecraft lie along similar geocentric lines-of-sight, significant navigation advantages may sometimes be achieved by differencing data acquired simultaneously from the two spacecraft and, in effect, determining the orbit of the second encountering spacecraft relative to the first rather than treating them independently. The potential benefits result from reduced sensitivity to at least three of the major error sources affecting orbit determination with radiometric data. First, and probably most important, is reduced sensitivity to target ephemeris errors. After encounter, the trajectory of the first spacecraft is known precisely relative to the planet. Thus, the second spacecraft may be accurately tied to the planet through the first. Second, the effect of platform parameter errors is reduced. When the two spacecraft are tracked simultaneously from nearby ground stations, errors common to both stations cancel when the data are differenced. The reduced sensitivity to station location errors that results should also make the low declination problem of orbit determination somewhat less severe. Finally, when the angular separation between the two lines-of-sight is very small, most of the transmission media effects should also cancel. The geocentric information that is lost by differencing the data may be easily restored by including a suitable amount of conventional range and/or doppler, deweighted to avoid reintroducing the error sensitivities.

II. Technology Status

Extensive studies of dual spacecraft tracking have been performed (Refs. 1-3) including analytic investigation of the information content of dual spacecraft data types and two flight demonstrations with the Viking spacecraft, one during early cruise and the other during the approach phase of Viking 2. Results indicate that dual spacecraft data types may improve navigation accuracy by a factor of 2 to 10 under the conditions of small angular separation of the two spacecraft and well determined trajectory of the reference spacecraft.

The most recent demonstration conducted with the two Viking spacecraft during the approach phase is worth special attention. With only 8 days of dual spacecraft tracking, the actual B-plane error of the trailing spacecraft was determined to better than 200 km compared with 1000 km for the same data arc using conventional radiometric data. The 1000 km error using conventional data is believed to be due to large
plasma noise (SEP ≈ 17 deg), low declination (δ < 5 deg) and station location errors. Reduced sensitivity to planet ephemeris errors was also verified in this demonstration by introducing an intentional 2000 km error in the Mars ephemeris. Dual spacecraft tracking gave a factor of 10 improvement over conventional data in the presence of this large ephemeris error. Although the Viking orbiter/approach configuration differs substantially from the Voyager dual flyby, the Viking demo has verified feasibility of the concept and gives confidence that the potential benefits for Voyager can, in fact, be realized.

III. Application to the Uranus Option
Saturn Encounter

The Uranus option mission is well suited for a dual spacecraft strategy for the following reasons:

1. The Uranus option for the second spacecraft will not be exercised unless a successful Saturn encounter is achieved by the lead spacecraft. Thus, the assumption that the first spacecraft will be available as a reference for the Uranus-targeted spacecraft is valid.

2. The Uranus option trajectory design on certain launch days stretches propellant reserves nearly to the limit (Ref. 4). A precise Saturn encounter by the second spacecraft will reduce the magnitude of the post-Saturn maneuver and increase the probability of having sufficient propellant for a successful Uranus encounter. In fact, if a large injection error or other propellant-wasting event should occur, the dual spacecraft strategy might be a means of preserving the Uranus option without relying entirely upon optical navigation.

A series of simulated analyses of dual spacecraft tracking for the JSX-Uranus option at Saturn have been carefully performed. The data distribution and arc length of the conventional data types for the second spacecraft are the same as used for the baseline analysis reported in Section 2 of Ref. 5. (Note that “conventional” data in this context include dual station doppler and near-simultaneous range.) For the dual spacecraft tracking simulation, the approach tracking pattern for the second spacecraft was duplicated during the same time interval for the first spacecraft, which at this point has already flown by Saturn and is nine months ahead of the second. The encounter analysis was done using both two-station and four-station dual spacecraft data types. The data types will be described as the results for each are presented.

A. Results Using Dual Spacecraft Two-Station Data

Dual spacecraft two-station differenced doppler is formed by differencing conventional two-way doppler received simultaneously from the two spacecraft by two stations within the same station complex. Dual spacecraft two-station differenced range is constructed in the same manner, but can be obtained only at the Goldstone complex where two range machines are available. In this analysis two-station differenced doppler is weighted at 15 mHz (1 mm/s) at 60-s integration time, and the conventional doppler, if included, is loosely weighted at 150 mHz to retain the geocentric range rate information without degrading the planet relative information. The two-station differenced range is weighted at 20 m, and the conventional range (near-simultaneous) is loosely weighted at 1 km. Based on various combinations of these data types and different strategies of estimation, a series of B-plane solutions were obtained. These solutions may be grouped into two kinds: (1) estimating the state of the second spacecraft and considering the state of the first one, (2) estimating the state of both spacecraft. Both (1) and (2) are considering station locations and range biases as error sources that are not estimated. The results are given in Fig. 1.

The improvements in navigation accuracy of the second spacecraft using two spacecraft tracking depend heavily on how well the first spacecraft is tied to the planet during the approach of the second one. A post flyby long arc solution (radio only) of the first spacecraft was tried, and it yielded a position error of about 250 km relative to Saturn at the epoch of the trajectory of the trailing spacecraft. Later this is used as the a priori covariance for the state of the first spacecraft whether it is considered or estimated.

B-plane solutions of the first kind, where the first spacecraft state is considered, show significant improvements from the results of conventional radiometric data types beginning about 11 days before encounter. These solutions, which give a time history of Saturn B-plane statistics as shown by the uppermost broken line in Fig. 1, are based on dual spacecraft two-station doppler combined with loosely weighted conventional range (no conventional doppler) with nongravitational accelerations of both spacecraft estimated stochastically. The rapid increase in B-plane accuracy during the last 10 days of Saturn approach would offer substantial benefit to the mission if the final approach maneuver could be delayed to, say, E-7 days. Delivery and knowledge accuracy would be improved by 35% and 60%, respectively, in this case. The local maximum at E-18 days is believed to be due to the fact that the sensitivity to the reference spacecraft is magnified by the zero declination of the second spacecraft which occurs at E-22 days. This sensitivity becomes even greater when the dual spacecraft two-station range is included. These large sensitivities suggest that the state of the first spacecraft should be estimated as well.

When the states of both spacecraft are estimated, improvements in B-plane accuracy occur much earlier as may be seen
from the appropriate curves in Fig. 1. The data set used in
generating these orbit determination (OD) solutions is the
same as for the first cases except that dual spacecraft
two-station range is also included. The upper curve of the two
where both spacecraft states are estimated represents the case
where stochastic nongravitational accelerations from both
spacecraft are estimated sequentially with a two-day batch size
and a one-day correlation time. The B-plane accuracy improve-
ment after E-8 days is fairly consistent with the first case,
where the state of the first spacecraft is not estimated, but the
performance prior to E-8 days is dramatically improved.
Because the improvement occurs earlier in this case, it would
not be necessary to delay the final approach maneuver from its
nominal time at E-10 days in order to realize the potential
benefits of this strategy.

If the stochastic unmodelled accelerations from both
spacecraft are assumed to be negligible during the Saturn
approach, sequential estimation of these parameters becomes
unnecessary, and further improvement in B-plane accuracy
may be expected as shown by the lower curve in Fig. 1. A
factor of 4 improvement in both delivery and knowledge may
be possible provided that the above optimistic assumption is
valid.

B. Results Using Dual Spacecraft
Four-Station Doppler

The sensitivity to nongravitational accelerations indicated
by the difference between the two lower curves in Fig. 1 and
the sensitivity to the state of the reference spacecraft indicated
by the upper curve provide the motivation for considering the
use of dual spacecraft four-station doppler data. If the same
spacecraft is simultaneously tracked from two widely sepa-
rated tracking stations such as Goldstone and Australia,
differencing of the corresponding doppler data from the two
stations provides differenced doppler that is unaffected by
geo-centric range rate changes and hence relatively uncorrupted
by unmodelled spacecraft accelerations. With dual spacecraft
tracking the differenced doppler data from both spacecraft
will again be differenced. This twice differenced new data type
requires simultaneous tracking by four stations, and thus is
called dual spacecraft four-station doppler.

This new data type is insensitive to nearly all the error
sources usually associated with radiometric data, and therefore
the OD capabilities depend heavily on the quality and quantity
of such data within a given arc of the trajectory. In this
analysis, during the three station overlaps of each tracking
cycle (as defined in Section 2.1.2 of Ref. 5) a total of 8 to 10
hours of dual spacecraft four-station doppler was generated.
Four different OD solutions were tried using this data, and the
resulting B-plane histories are shown in Fig. 2. The two curves
shown with nonuniform dashed lines are the results of the
same estimation strategy (estimating the state of the second
spacecraft and the constant part of nongravitational accelera-
tions and considering the state of the first spacecraft and
station locations) with different data weights. The upper curve
has the four-station doppler weighted at the standard 1 mm/s
with conventional range loosely weighted; the lower one has
the weight of the four-station doppler reduced to 0.5 mm/s to
account for the expected improvement in data quality after
double differencing. It is clear that the improvement in
navigation depends strongly on the quality of this new data
type which has not yet been demonstrated.

Although a 40% improvement in delivery may be possible
with the four-station doppler and conventional range, the
improvement at the knowledge point is not as good as that of
dual spacecraft two-station data. This is because the informa-
tion contained in the four-station doppler observables consists
only of the differential angles between the two spacecraft,
which are less effective in determining the bending of the
trajectory caused by the planet than the differential range and
range rate information in the two-station data types. The range
rate information may be provided by including loosely
weighted conventional doppler. The results for this case are
given by the remaining two dashed curves in Fig. 2, which
show substantial improvement after E-5 days, where planetary
bending begins to occur.

The two-station and four-station dual spacecraft data types
were analyzed separately to determine the characteristics and
accuracy potential of each. The four-station doppler is
"cleaner" and less vulnerable to unmodelled accelerations, but
its information content is less, and it can only be obtained
during view period overlaps between stations. It may be
possible to gain the advantages of both by combining them in
a single solution. However, the strategy for doing this (relative
data weights, choice of estimated parameters, etc.) must be
carefully investigated as new error sensitivities may be intro-
duced by the combined data set which will offset the potential
advantages.

IV. Demonstration Opportunity at Jupiter

Although the Viking demonstrations were successful, fur-
ther verification of dual spacecraft tracking for the Voyager
application is needed for the following reasons:

1. Four-station dual spacecraft data was not available
during the Viking demonstrations; therefore, its quality
is uncertain and its utility has not been verified.

2. Angular separation of the Viking spacecraft at
encounter was extremely small (0.15 deg). Voyager
separation will be 5 to 6 deg at Jupiter, 9 deg at Saturn.
(3) In the Viking encounter demonstration the reference spacecraft was an orbiter. Voyager is a dual flyby with relatively large time separation between encounters.

(4) The information content of the differenced data is a function of local accelerations, which will be quite different for the massive outer planets than for Mars.

The Voyager dual flyby at Jupiter provides a good opportunity to demonstrate this technique for application at Saturn. Furthermore, if the test can be conducted in near-real time, the results may be of direct benefit for navigation of the trailing spacecraft at Jupiter. To determine the potential navigation enhancement at Jupiter, analysis was performed using the JSX-CB10 encounter. This trajectory was selected because it is the more difficult of the two JSX Jupiter encounters considered in the baseline analysis. The Jupiter relative and Callisto relative B-plane time histories for dual spacecraft tracking are compared with the corresponding baseline results in Figs. 3 and 4, respectively.

Figure 4 shows that dual spacecraft two-station data are capable of reducing Callisto relative errors to the level of the satellite ephemeris error (300 km) at the delivery epoch (E=13.5 days) and gives a factor of 3 improvement over conventional data at the knowledge epoch (E=3.5 days). The Jupiter relative improvement shown in Fig. 3 is more dramatic, since it results from the combination of a direct effect (reducing Jupiter relative errors which exist prior to the Callisto flyby) and an indirect effect (reducing the magnitude of the Callisto perturbation uncertainty by reducing Callisto relative errors).

The relative performance of the two-station and four-station dual spacecraft data types at Jupiter is similar to that observed in the Saturn encounter analysis. However, since the conventional data performance is better at Jupiter, the four-station doppler (with its limited information content) does not show substantial improvement over the baseline results until fairly close to encounter, near the knowledge epoch. This is true even though the four-station doppler was assumed to be of high quality in this analysis (0.5 mm/s).

V. Tracking and Data Processing Requirements

Dual spacecraft tracking, by definition, requires the acquisition of radiometric data simultaneously from two spacecraft. This means, of course, that the first spacecraft must be given relatively dense tracking coverage during the approach phase of the second, which would normally be a quiescent period for the first. However, the Viking demonstrations and covariance analyses have shown that relatively short arcs of dual spacecraft data are effective (a characteristic that is shared with differential VLBI, which is very similar to dual spacecraft tracking in principle). Therefore, tracking requirements are not excessive. In fact, one of the potential benefits of dual spacecraft tracking is an overall reduction of tracking time.

Dual spacecraft tracking requires no hardware changes and only minor modifications to navigation software. For the Viking demonstrations a special version of the program ODE was created to maintain simultaneity of dual spacecraft doppler after editing and compression. Another special program was developed to difference the two-station and four-station data types. The differenced data can be processed by the Voyager ODP with no additional modifications. The demonstration software is available and can serve as a prototype software.
References


Fig. 1. JSX-Uranus option Saturn relative B-plane errors using dual spacecraft two-station data
Fig. 2. JSX-Uranus option Saturn relative B-plane error using dual spacecraft four-station doppler
Fig. 3. JSX-CB10 Jupiter relative B-plane errors with dual spacecraft tracking

Fig. 4. JSX-CB10 Callisto relative B-plane errors with dual spacecraft tracking