TDA Progress Report 42-58

May and June 1980

Quicklist—The Basis for a Computer-Aided
Logic Design System

W. A. Lushbaugh

Communications Systems Research Section

The description of a digital system must eventually include a point-to-point wire list.
Previous methods of computer-generated wire lists have required one record of input for
each point to be wired. Quicklist is a preprocessor for an existing wire listing program
that cuts the description of the wire list by about 67 percent over previous methods.
Quicklist is intended to be the basis of a computer-aided logic design system.

l. Introduction

Many digital systems are constructed on wire wrap boards.
These boards are most conveniently wired by automatic or
semiautomatic wire wrap systems for large quantity produc-
tions, but many prototype and small quantity boards are still
wrapped by hand, In any event, a computer-generated wire list
is advantageous to expedite the work. Most wire listing
programs, however, require one record of input for each point
to be wired. Quicklist is a preprocessor for an existing wire list
program that cuts the description of the wire list by about 67
percent over previous methods. Quicklist is intended to be the
basis of a computer-aided logic design system.

Il. Review of Wire List Program

H. C. Wilck has written a program that has proved very
useful in providing wire listing information for the wire wrap
board used by the Digital Projects Group. This program is a
very advanced program in that it allows inputs in the form of
chip signal names rather than actual chip pin numbers,

although the user may call out chip pin numbers if desired.
The method by which this is accomplished is to provide a
definition deck in front of the wiring information. Some of
the highlights of this program follow:

The definition deck has the following format:

D, type, number of pins, number of defined pins, spacing,
description :

1, type, pin number — pin function, pin number — pin
function, . . .

2, type, pin number — pin function, . ..

D, type, . ..
where the terms have the following definitions:

Type: 1 to 8 alphanumeric characters used to designate the
dual in-line package (DIP); e.g., SN 7400.

67



Number of Pins: A decimal number (NP) specifying the
number of pins on the DIP. 2 < NP < 88,

Number of Defined Pins: A decimal number (NDP)
specifying the number of pin definitions that follow. If NDP <
NP then there are pins that the manufacturer has not
connected.

Spacing: A decimal number (SP) specifying the spacing
between the two columns of pins on the DIP in tenths of an
inch.,

Description: 0 to 60 alphanumeric characters describing the
nature of the package; e.g., DUAL J-K FLIP-FLOP.

Pin Number: A decimal number (N) that designates the pin
to be named. ] SN <NP.

Pin Function (name): 0 to 4 alphanumeric characters. This
name describes the electrical function of the pin; such as
OUT1, A0, A1, IN3, Q1’, etc. The pin function may be used in
lieu of the pin number when the wire listing data is given to
the program.

The SIGNAL ASSIGNMENT DECK is the actual wire
routing information to the program. This deck is chip
oriented, i.e., input is grouped by DIP’s, with all signals on one
chip entered as a group. The format of this deck is:

P, LOC, Type, Function

1, LOC, pin id(entification) — signal name, pin id — signal
name, . . .

2, LOC, pin id — signal name, . . .

P, LOC, Type, ...

where these terms have the following definitions:
LOC: A five-digit number specifying the location of the
corner pin (pin 1) of the chip on the board.

Type: 1 to 8 alphanumeric characters. This must agree with
one of the types in the definition deck.

Pin id: Either the actual pin number of the chip or the
mnemonic pin function assigned to that pin in the definition

deck.

Signal name: 1 to 8 alphanumeric characters that identify
the signal to be connected to the pin specified by the pin id.

68

Every pin tied to the same signal name will be tied together by
the wire listing program.

Special Characters. Both in the definition deck and the
signal assignment deck the dash (-) between pin number — pin
function or pin identification — signal name may be replaced
by other special signals, These are:

& — defines the pin to be an output that can be collector
or-ed or tri state.

E3 £3onna

AL s dlaa wmlin LA Yo nd mnim s
o UCLINES UIC PIIL Lo

A B rsdaasud 4 4 Tan 4243 4~
¢ an Oulputl wnat cainot oe tied 1o
another output.

+ — defines the pin as connected to +5V,

> — defines the pin to be connected to ground.

lll. Quicklist

Quicklist is a preprocessor program written to shorten the
input signal assignments to the program described above.
Quicklist uses two different methods to shorten the input
data. The first of these is the use of parentheses to allow a
compact way of describing signal names which increment (or
decrement) by one, i.e., typical signal names in a bus. The
other method used is the equal sign. Using this symbol in a
signal list says that the rest of the signals on that chip are the
same as those on the previous chip described. Inputs to
Quicklist look very similar to those described above; ie., a
typical signal assignment deck is:

P, LOC, type, function
1, LOC, pin id — signal name, . ..

except that cards with numbers in col. 1 may take the form
1, LOC, pin id (N; — N,) — signal name (N3 —N,),...,=

where pin id (N; — N,) is the name (as called out in the
definition deck) of a set of pins that have names that go in
order from N, to N,. For example, for the 2147 memory chip
A00, AO1, ... All are the 12 address inputs. Similarly, signal
name (N3 — N,) is the name of a set of signals that run from
say SIGN, to SIGN,; e.g., ADBUS 00 to ADBUS 11. As an
example, consider two 2147 chips wired to the same address
buss, write enable and chip select. The Quicklist input would
then be:

P,LOC, 2147, Memory 1
1, LOC, DIN-DATAOQ, DOUT-DOUTO
2, LOC, A(0-11) — ADBUS(0)




3, LOC, WE-WRTEN, CS-CHPSEL
P, LOC1, 2147, Memory 2
1,L0OC1, DIN-DATA1, DOUT-DOUT1, =

The output from these five input cards would be:
P, LOC, 2147, memory 1
1, LOC, DIN-DATAQ; DOUT-DOUTO
2, LOC, A00-ADBUS00, A01-ADBUSO1, . ..
3,LOC, A04-ADBUSO4, . . .
4, LOC, AO8-ADBUSOS, ..., A11-ADBUS11
5, LOC, WE-WRTEN, CS-CHPSEL
P, LOCI1, 2147, memory 2
1, LOC1, DIN-DATAL1, DOUT-DOUT1
2,LOC1, A00-ADBUS00, A01-ABUSO1L, . ..
3, LOC1, A04-ADBUS04, . . .
4,L0OC1, A08-ADBUSO0S, . .., A11-ADBUSI11
5, LOC1, SE-WRTEN, CS-CHPSEL

In this case, the 16 nonpower and ground signals of the first
chip were described with three short inputs cards, and the
second chip was described in only two cards due to the use of
the equal sign.

It should be noticed that Quicklist provides automatic
double digiting; i.e., if either N; or N, is a two-digit number,
then all the numbers from N; to N, are put in double-digit
format. The same is true of the pair N5 and N,. The use of N,
or N, is optional, but at least one of them must appear. To
clarify this, the following input strings all produce identical
output:

A(00-11) — ADBUS (00-11)

A(0-11) — ADBUS(00-11)

A(0-11) — ADBUS(0-11)

A(0-11) - ADBUS(0)

A(0) — ADBUS(0-11)
Notice that the last two of these are the easiest to enter and
the second from last is the one to be recommended; i.e., put

the range of the bussed signal on the side where the definition
deck can pick up any errors.

Either N, or N3 may be a single letter. This accommodates
chips whose outputs are, for example, QA, QB, QC, QD as in
the SN74163. N, must be smaller than N, but N is allowed

to be less than N, (including letters with A<B <C. .. etc.).
In this case autodecrementing of signal names is supplied, but
autoincrementing on N, is always done. Thus, the string

A(0) — ADBUS(11-0)

will produce output of the form

A00 — ADBUSI11, AO1 — ADBUS10, A02 — ADBUSO09,
etc.

Table 1 shows some typical examples of the forms pin id
(N, — N,)-signame (N; — N,). Note that pin id as well as
sign name are optional. Also, one of the pairs N;, N, or Ny,
N, may be omitted.

IV. Future Expansion

Quicklist can easily be expanded and generalized to be of
even more use to the design engineer. The syntax of Quicklist
and the associated program should allow dummy variables and
loops as in any high-level programming language. To allow this,
however, one must, and indeed would like to, allow the
LOC(ation) field of the signal list input cards to be mnemonics
for locations that would be filled in later by a location deck
which would locate the DIPs on the board. This feature would
also allow an easy way to leave a design fixed but to transfer it
to a different board that might have a different geometry. An
example will clarify this, Consider the following set of input
cards:

FOR I:=0, 7

P, M(D), 2147, 4K MEMORY

1, M(I), A(0-11) — ADBUS(0)

2, M(D), D IN — DATA(D), DOUT-DOUT(I)

3, M(I), WE-WRTEN, CS-CHPSEL

END

This syntax describes a 4 K by 8-bit memory consisting of *
eight 2147’s all tied to the same address buss, write enable,
and chip select, The data input of each of these eight chips is
tied to one of a data input bus DATAOQ through DATA7 and
the data output tied to a data output bus. The locations of
these eight chips are unspecified but these locations have been
assigned the mnemonics MO through M7, and will be assigned
at a later time. Once dummy variables are allowed, nested
loops and arithmetic expressions would be a natural extension.

For example:

FORI:=0, 3

P, R(I), SN54LS374, 8 BIT REGISTER

69




1, R(I), D(0-7) — INBUS(0+8*T)
2, R(I), Q(0-7) — OUTBUS(0+8%1)
3, R(I), CL-CLOCK, OS-OUTSEL
END

would describe a 32-bit hold register, consisting of four
SN541LS374 DIP’s each containing 8 bits.

The constraint that all inputs of a DIP be input as a group
should also be dropped. When designing things like counters,
many of the inputs can easily be described by the above-
mentioned syntax, but certain inputs like carry in and carry
out are different for each chip in the design. For instance, a
20-bit counter using SN54163’s would most easily be
described as

FOR1:=0,3
P, AD(I), SN54163, 4 BIT COUNTER
1, AD(I), (A-D) — INBUS (0+4*1)

70

2, AD(I), Q(A-D) — AD(0+4*T)

3, AD(I), LD-LOAD, CK-CLOCK, CLR-CLEAR
END

4, ADO, EP-ENABLE, ET-ENABLE, RCO-RIPCRY
4, AD1, EP-RIPCRY, ET-RIPCRY, RCO-CRY1
FOR I:=23

4, AD(I), EP-RIPCRY, ET-CRY(I-1), RCO-CRY(T)
END

V. Conclusion

Quicklist has proven quite useful to those who have used it.
The number of keystrokes necessary to describe digital
systems has been reduced up to 67 percent in systems that
have a highly bussed structure. The future plans for expansion
would further increase the effectiveness of the program and
make it the basis for a computer-aided-design system.




Table 1. Quicklist examples

Example

A(0) — BUS(0-11)
A(0-11) — BUS (0)
A(0) — BUS(11-0)
A(5-8) — BUS(0)
Q(A) — BUS(0-3)
Q(D) — BUS(D-A)
A(6-9) - (0)OUT
A@4-T) — (2(0)B
IN(A)1 - T(0-4)6B
A(5-9) — RESET
A(0-3)>

(1-4) — RESET
(1-4) +

Result (first, second, . . . last)
A00 — BUS00, AOL — BUSOL, ..., All - BUSI11
A00 — BUS00, A01 - BUSO1, ..., All — BUSI1
A00 — BUSI1, A01 —~ BUS10,..., All — BUS00
AS — BUSO, A6 — BUSI, ..., A8 — BUS3
QA - BUSO, QB - BUSI, ..., QD - BUS3

QD - BUDD, QE - BUSC, ..., QG — BUSA

A6 —~ QOUT, A7 - 10UT, ..., A9-30UT

A4 — 20B, AS - 21B,...,A7 - 23B

INA1 - TO6B, INB1 — T16B,...,INEl — T46B
AS — RESET, A6 — RESET, ..., A9 — RESET
A0>, Al>, ..., A3>; grounds four pins

1 - RESET, 2 — RESET,...,4 — RESET

1+, 2+, 3+, 4+, ties pins 1-4 to +5V

71




