TDA Progress Report 42-73

January—March 1983

Node Synchronization for the Viterbi Decoder

G. Lorden' , R. McElieceQ, and L. Swanson
Communications Systems Research Section

At very low signal-to-noise ratios such as those that Voyager 2 will encounter at
Uranus, the performance of the Reed-Solomon/Viterbi concatenated coding system could
be seriously degraded by loss of node synchronization by the Viterbi decoder. In this
article we will describe this problem and show that it can be almost completely avoided
with a simple outboard hardware ‘“‘node synchronizer,” This device makes statistical
decisions about node sync based on the hard-quantized undecoded data stream. We
show that in a worst-case Voyager-like environment, our method will detect and correct
a true loss of node sync (thought to be a very rate event) within several hundred bits;
many of these outages will be corrected by the RS code. At the same time, the mean
time between false alarms for our technique is on the order of several years.

l. Introduction

This paper deals with the problem of detecting and correct-
ing losses of node synchronization in convolutionally encoded
data. We are motivated by our desire to restore the loss of
telemetry on future NASA deep-space missions which has
been predicted in Refs. 1 and 2, and has been seen in hardware
tests (Ref. 3). For definiteness, this report will only deal with
the problem as it occurs on the present Voyager 2 mission, but
our results will apply equally to any mission in which the
telemetry is protected by a Reed-Solomon/Viterbi concate-
nated coding system.

On Voyager, the high-rate downlink telemetry is protected
by a K=7, rate 1/2 convolutional code concatenated with a
depth~4 interleaved (255,223) Reed-Solomon code. In prin-
ciple this combination provides excellent error protection (bit
error probability 1.0E-6) for Voyager’s highly sensitive imag-

1Consultant, Caltech Mathematics Department
Consultant, Caltech Electrical Engineering Department

22

ing data, at bit signal-to-noise ratios as low as 2.9 dB. Since the
rate of the outer code is 223/255 = -0.6 dB, when the overall
SNR is 2.9 dB, the inner convolutional code is operating at
about 2.3 dB.

However, in practice, the performance of the concatenated
system is significantly worse than theoretical predictions. One
problem is carrier-loop jitter, which degrades performance
by 0.5 dB or more (Ref. 1). This means that if the system bit
SNR remains at the nominal 2.9-dB value, the inner convolu-
tional code must operate at less than 2.0 dB. This is a value
much lower than that for which the DSN’s hardware Viterbi
decoders were designed. In this demanding environment, the
Viterbi decoder’s internal node synchronization hardware,
whose function is to detect and correct true external losses of
node sync, is prone to produce flase alarms i.e., spurious losses
of node sync, and send useless data to the Reed-Solomon
decoder until node sync is reestablished. In Ref. 2 it was
shown that this hardware problem can degrade Voyager's
performance by a further 1.0 dB or more.

In this article we shall show that this data loss due to
spurious node sync loss in the Viterbi decoder is completely
avoidable. Our proposed solution involves disabling the Viterbi
decoder’s internal synchronization hardware and implementing
an external node sync algorithm. Our algorithm is easy to
implement and depends on likelihood calculations based on
observations of the hard-quantized encoded data stream. In
a worst-case Voyager environment, our method will detect
and correct a true loss of node sync within several hundred
bits; many of these outages will be corrected by the Reed-
Solomon code. On the other hand, the mean time between
false alarms for our technique (which is independent of the
SNR) is on the order of several years. Thus for practical pur-
poses our technique introduces no false alarms, and the
system SNR loss due to node sync problems will be eliminated,
with no loss of protection against true node sync losses. As an
outboard hardware device, our algorithm could be imple-
mented on a single DSN standard single-board computer such
as the iSBC 86/12, at least at data rates up to 20 kbps.

The paper is divided into three sections. In Section II, we
present a functional description of our algorithm, together
with a summary of the relevant mathematics. In Section III,
we present some numerical performance results for our tech-
nique. They will quantify the assertions made above (mean
time between false alarms, probability of uncorrectable errors
due to true loss of sync, etc.). We also include in the appen-
dices some background information.

ll. The Up-Down Counter

We adopt the following model, which has been found to
be very accurate for coherent deep-space communication
(Ref. 4). The information to be transmitted via the convolu-
tional code (which in Voyager is already encoded) is a sequence
oMy, M_,, My, My, M, ... of independent identically
distributed random variables, each equally likely to be 0 or 1.
The encoded stream ..., C_5, C,, C_;, G, Cy, . .. is defined
by the encoding equations®

CZk = M2k +M2k-—2 +M2k—4 +M2k—6 +M2k-—12
(mod 2) 0))
C2k—1 = M2k + M2k—4 + M2k~6 + Mzk— 10 + M2k—12

(mod 2))

3We shall illustrate all of our results for the NASA standard K = 7,
rate 1/2 convolutional code, but everything generalizes easily to any
rate 1/2 convolutional code.

We also define the * versions of the encoded stream:
+1if q =0
-1if C} = 1.

The encoded bits {D,} are used to modulate a radio fre-
quency signal, which is transmitted by Voyager to Earth.
After detection and demodulation, a sequence {13k} is received,
where ﬁk = D, +Z, . The sequence {Z,} is the error sequence.
If the noise process is additive white Gaussian noise, then the
sequence {Z;} is ii.d., the common distribution being Gaus-
sian, mean zero and variance 02 = 1/u, where u is twice the
symbol SNR.

The Viterbi decoder attempts to recover the message bits
from the noisy code sequence {ﬁk}. It does this by making a
very efficient maximum likelihood estimate of each of the
message bits {M,]-}. However, in order to operate, the Viterbi
decoder must have node sync, i.e., it must know which of the
received symbols have even subscripts and which have odd
subscripts. Of course there are only two possibilities, but if the
wrong hypothesis is made, the output of the Viterbi decoder
will bear no useful relationship to the message stream {M,;}.

Our algorithm will provide node sync information for the
Viterbi decoder. It is based on the hard-quantized received
sequence {Rk}, where '

0ifD is=0
k
1iff)k is < 0.

Clearly R, = C, + E, (mod 2), where {E,} is iid, and E, =
0 or 1. The error probability P, = Pr {E, = 1} is given by

00 2 .
P = lfe"t/zdt, 3)
Vam J,

where as before = 2E(/N,.

Associated with the hard-quantized received sequence
{R, } is the syndrome, or parity-check sequence {X,} (Ref. 5):

Xk = Rk +Rk—l +Rk—3 +Rk-—4 +Rk—-5 +Rk-—6 +Rk—7

+R___+R__+R . @

23

If there are no errors, ie., if £ = 0 for all %, then it follows
from (1) and (2) that X, = O for all even subscripts &. In fact
we have explicitly

X,

= E +E_ +E__+E_,+E_ +E__+E

1 k-3 k-4 k-5 k-6 k=17

+ £ +E +E,_ 5k even. 5)

For odd k, (1) and (2) show that the X} ’s are independent and
take the values 0 and 1 with probability 1/2 each, regardless of
the {E, } sequence. (This is shown in detail in Appendix A.)

For even k, (5) shows that £, will be zero if and only if
an even number of {£, E__,, E ., E ., E . E_
Ek_7, Ek~10, Ek—12’ Ek~13} are one. The probability of this

is easily seen to be

1+(1-2p)"°
2

w

(6

The foregoing describes the distribution of the received
sequence and of the parity-check sequence in case node
synchronization is maintained. This will be called the in-sync
hypothesis. The out-of-sync hypothesis describes the situa-
tion when node synchronization is in error. In this case the
R;’s and X;’s behave as though the subscripts were shifted by
one. Thus, under the out-of-sync hypothesis it is the odd
parity checks that are correct with probability 7 and the
even ones that are purely random.

We assume that node synchronization has been acquired
and maintained and that the in-sync hypothesis is initially
true. We wish to monitor the received sequence so as to detect
loss of sync, ie., a sudden change making the received se-
quence obey the out-of-sync hypothesis. A method for doing
this simply can be¢ based on a general statistical technique
(Ref. 6) for detecting a change in distribution. To apply this
technique it is necessary to simplify the model by assuming
that the parity checks X; are independent. They are not
independent for even i, but the dependence between widely
separated X’s is slight, so calculations based on this assump-
tion should be illustrative.

The method for detecting loss of sync is based on a counter
with increments

q(X)

L (Xn) = log m‘;

where p(X,,) and g(X,) are the likelihoods of X, under the
in-sync and out-of-sync hypotheses, respectively.

24

As shown above
1/2 if nis odd
pX,) =

mifnisevenand X =0
l-mifnisevenand X =1
whereas q (X,) reverses the odd and even cases. Thus,
(-1)*"' log (2m) if X =0
LX) =

1" 'log(2(2-7) if X, =1.

The counter is defined by

I, = 0
T = max ([T, +L(X)],0),n=1.

A threshold v > 0 is chosen, and the process stops the first
time T, = v. Since at this point there is a substantial likeli-
hood ratio in favor of the out-of-sync hypothesis, the infer-
ence is made that loss of node synchronization has occurred.
This loss of node sync can be remedied by either adding or
deleting a channel symbol; the node synchronizer will alter-
nate adding and deleting symbols in order to avoid ruining
frame boundaries.

The performance of such a counter for a particular 7y is
characterized by two average run lengths (ARL’s).

(1) The short ARL. This is the average number of pairs
of symbols needed to reach the threshold if the out-of-
sync hypothesis is true from the beginning, and

(2) The long ARL. This is the average number of pairs of
symbols needed to reach the threshold if the in-sync
hypothesis remains true.

The short ARL gives an upper bound on the average time
between loss of sync and its detection, since whenever loss
of sync occurs the counter has a nonnegative value. The long
ARL (or its reciprocal) describes the frequency of false detec-
tion of loss of node synchronization.

An exact determination of the ARL’s will be made in
Section III, for a very slight modification of the scheme
described. It is instructive, however, particularly for later
comparisons, to consider their asymptotic behavior as v = e
It turns out that

short ARL ~ 11

and
long ARL~Ce?,
so that
short ARL ~ w . (N

Here the constant I, which is much more critical than C, is
the Kullback-Leibler information number per pair of symbols.
This number is simply the average increment of the counter
per pair of symbols when the out-of-sync hypothesis is true.
Since each pair of symbols generates one even X, and one odd
X 3

n

I'=1+I,

where

I, = q(0lnodd)log 27 + q (1ln 0dd) log 2(1 ~)

= 7log(2m) + (1 - 7) log (2(1 - 7)),

I = q(Oin even) (-log 27) + q (lin even) (-log (2(1 ~ 7))
= -1/2 log (4n(1 - 7)) .

Table 1 shows the dependence of the information numbers
on P the symbol error probability. It should be noted that
the information numbers decrease substantially as the symbol
error probability becomes larger. Thus, the ARL’s become less
favorable as p, increases.

If one makes the very slight change of inspecting the
counter only at even #, i.e., once for each pair of symbols,
then a simpler description of the counter is possible. This is
because two consecutive X n’s = 0 (successful parity checks)
yield a net change of zero, as do consecutive X, s = 1. If,
however, one of the pair of X, ’sis 0 and the other 1, then the
total increment of the counter is easily seen to be * log
#/(1 - @), with + if and only if the odd X, =0(e., botha
successful check for the out-of-sync hypothesis and a failure
for the in-sync hypothesis). Thus the counter moves up and
down by a fixed step size and standard random walk formulas
(Ref. 7, p. 351) can be used to derive exact formulas for the
ARL’s under the simplifying assumption of independence.
Assuming without loss of generality that

Yy =mlog T

m an integer, one has

= - 1-[n/Q -m]~"
short ARL = (m-0.5)"" (m+ - [nf(T-m)])
and
o (85

Table 2 illustrates the relationship between the two ARL’s
as a function of m for two symbol error probabilities.

A. Counter with Memory

A simple parity check counter does a fairly good job of
node synchronization in case of high SNR (Ref. 5). But in
the case of high symbol error probability, the probability of
parity check error is quite high. For example, symbol error
probability 0.1 corresponds to m = 0.45, Thus, in-sync data
with p, = 0.1 will fail an even parity check with probability
0.45, while out-of sync data will fail the even parity checks
with probability 0.5. A counter to distinguish between dis-
tributions which are so close will either require a long time to
react to incorrect sync or have a large probability of incorrect
change. Performance numbers for such a counter are indi-
cated in Table 2.

If the parity checks were independent, there would be no
way to improve this performance (Ref, 6). But parity checks
are not independent. This is because, under the in-sync hypo-
thesis, one channel symbol error changes the value of five
even parity checks. Under the in-sync hypothesis, for example,
an isolated error in the (n-12)th channel symbol will cause
parity check fajlures at time #, n - 2, n-6,n~-8,and n - 12,
Thus a long sequence of successful parity checks would lead
us to believe that another success is on the way, while the
sequence X, 1, =1, X, 10=0,X, ¢=1,%, ,=1,X, ,=
0, X,,_, = 1 would lead one to believe that X,, is very likely
to be 1. The reason a log-likelihood counter works so well
in the independent case is that by adding logarithms we
multiply their arguments. After receiving parity checks X; =

Xy, X, =x,, ..., X, =x,, where each x, is-zero or one, the
counter contains
n
q(x;)
1 ————q<x1)+1 _q(x2)+ +log—q(x”) = log——i=1
% pr,) 1B Bl PGy
I1»Cx)
i=1

25

If the parity checks were independent, this would be exactly

| q(X,
(o]
& (X,

XXy = Xy, X, = xn))
2

X, X, = xz,---,Xn = xn)

the log of the ratio of the likelihood of the string

(X, =x.,X, =x X, =x)

2> n
under the two hypotheses, which is statistically optimal for
detecting loss of synchronization.

In the case of noisy convolutionally encoded data, the
probability of a string of parity checks is not just the product
of the probabilities of the individual parity checks. Updating
the p probability of a string requires the conditional probability
p(Xn = xn |Xn—1 = xn—l’ Xn—z ’Xl = xl)‘
Therefore, a counter with increment

| q(X,,
6\ nx,

would, after step 7, contain

= Xpg,

XN = XX B x1)>
xnIXn—l - xn—l’”"Xl - xl)

]
1
1

i logQ(Xn =X X 5 X X T X _
TP, = X X,y = X e Xy = X)
r
. I__Il q(Xn =X an-—l = xn—l’ ’Xl - xl)
log p |
I:I1 p(Xn = xann—l = xn—l’”' ’Xl = xl)
log Q(Xr - 'xr’Xr—l R LR ’Xl = xl)
p(Xr = xr’Xr—l = xr—l’”"Xl = xl) ’

exactly the log of the quantity we desire. Of course, a real
counter won’t take into account a past of indefinite length,
But a (possibly large) integer m can be chosen, and a counter
constructed whose increment at time # is

1 q(Xn = xn IXn—l = xn—l s ’Xn—m = xn-m)
og — = =
p(Xn - xn IXn-—l - xn—l’ s Xn—m B xn—m)

As might be expected, for large m, the information number
approaches the information number for the hypothetical
counter based on the indefinite past of the parity check
sequence, This is verified in Appendix A. Moreover, the
information numbers obtained using the parity check sequence
are identical with information numbers obtainable from the
hard quantized received sequence. This means that there is
no loss of information or efficiency in using the parity check
sequence instead of the hard quantized received sequence to
detect loss of node synchronization. This is also shown in
Appendix A. Also, Appendix A shows that the counter incre-
ments depend only on parity checks of the same (odd or even)
type, i.e., (8) is unchanged if the given (X,_, =x,_;,X,, =
Xp_n, -)isreplaced by (X, , =X, 5, X, 4 =X%,.4,).

We will describe the counter in terms of the number of
parity checks used to determine the counter increment, and
we will call this k. For example, the “simple” (memoryless)

parity check counter corresponds to k = 1, while the counter
for & = 8 has counter increments
Xpgr Xy 1a

log (q(Xn xn—-14))
p(Xn) ’Xn—14 B xn—14)

In general, the counter using &k parity checks has increment
| q(X,
0

S\p(x,

The system which we have investigated in detail is therefore a
system which takes hard-quantized received channel symbols

xn |Xn—2 =

xn an—Z = xn-—2’ o

xann—Z = xn-—’z’ o

‘xn ‘Xn—2 =

Xokea = xn—2k+2))

Xpear 3 Xparia = Fnoakea)

R,,R,, -, creates parity checks X,,, X5, -, with
X = Ry*R, (+R 3 +R, J R, (R,
PR R TR TR

and keeps a counter whose increment at time » is

log X, = x 10X, 5 = X, 0 Xy g = X g X apia T Xy oga0)
p(Xn = xann—z = xn—2’Xn—4 = ‘xn—4’ T ’Xn-2k+2 = xn—2k+2)

26

In order to design this counter, we need to know

X = X

X, =x,1X s A2k 2

n-2 = xn—2’ T n—2k+2)

and ¢ of the same event for even and odd a. To calculate these
values, remember that for in-sync data, the even parity checks
depend only on the sequence of channel symbols errors. So
given a probability p, of symbols error, we can calculate the

probability that

E =e F =g -, FE

n nfpmp T Gp-ro n-2k-11 ~ Sn-2n-11

for each sequence ¢, e and use these

- n-1> """ Gmgg-anr
probabilities to calculate

PX, =X, X i = Xpgpan)
and
P,y = Xgr s Xy arra = Xparea)
and find
P, =X 01X, = X Xy akae = Xpoagea)
for even n.

For odd n, just as in the case of the simple counter, the
X,,’s are independent with p(X,, = 0) = 1/2. Thus
=1/2

p(Xn = xn an—Z =X) ’Xn

n-2’"" —2K+2 xn—2k+2)

for odd n.

To calculate the probabilities ¢ associated with the out-of-
sync hypothesis, just exchange even with odd in the above
argument. From these values, we can calculate the counter
increments. We did this, assuming a channel symbol error rate
of 0.1, which corresponds to a Viterbi decoded bit error rate
of 5 X 1073, the standard for imaging data. Voyager’s data
rate has been adjusted so that this is the largest channel sym-
bol error rate which will be encountered.

B. Information Numbers and Run Lengths

Just as in the case of the up-down counter, the average run
lengths are essentially determined by the threshold <y and the
information number 7, i.e., the average increment of the
counter when the data are truly out-of-sync. For large v the
run lengths are approximately

short ARL ~ -17—

and

long ARL ~ C €27 |

where C, D, and I depend, of course, on %k, the number of
parity checks used in determining the counter increment.
These approximations were borne out by the simulations
reported in Section III, and the constants C and D were
determined empirically for each % considered. I, the infor-
mation number, is the average increment of the counter
when the data are truly out-of-sync. (Of course, / depends
upon %, the number of parity checks used in determining
the counter increment, and is an increasing function of it.)

The information [/ from a pair of parity checks is the sum
of the information number 7. from the odd parity checks
(the average increment of the counter at odd #) and 7, from
the even parity checks. Table 3 shows the contributions of
these two parity check subsequences, revealing that the odd
checks contribute roughly two-thirds of the total information.

In designing the detection algorithm, we must choose a
symbol error probability p,, at which the counter is designed
to operate most efficiently. In practice, as the true symbol
error probability varies with the signal-to-noise ratio, it will
generally be smaller than p,, so that fewer parity check failures
occur. In this case, the counter will perform better whether
the data is in sync or not; i.e., the short ARL will be reduced
and the long ARL increased.

In case the signal-to-noise ratio is degraded so much that
the symbol error probability exceeds p,, however, a problem
arises in the performance of the counter, as both the short and
long ARL’s become less favorable. In real life, the symbol
error probability is not constant, and the fact that the long
ARL’s shorten during periods of low signal-to-noise ratio
would introduce the same spurious loss of sync which seems
to plague the current Viterbi decoders. If the short ARL gets
longer during a period of high symbol error rate, this causes
the response time to a loss of sync to increase and may cause
a string of data to be lost if the short run hits at the time of
low signal-to-noise ratio, but a shortening. of the long ARL
whenever there is such a period will have a far greater effect
on the overall behavior of the system.

This degradation of long ARL can be totally eliminated by
giving up the information Z, from the even parity check sub-
sequence. When the counter uses only the odd subsequence,
the long ARL is unaffected by the signal-to-noise ratio. This is
because the odd checks are completely random (independent,
with 50% probability of success) whenever the process is in
sync.

27

Since most of the information comes from the odd sub-
sequence anyway, we believe it is prudent to base the counter
on this subsequence alone. The performance parameters in the
next section were all calculated for counters based solely on
the out-of-sync parity checks.

IN. Performance Numbers

The size of the ROM needed for counter increments is 2%.
As before, we will describe the counter in terms of the number
k of parity checks needed to compute the counter increment.

Once k is chosen, the log-likelihood scheme determines the
counter increments. The only question left in algorithm design
is the threshold at which the system is declared out-of-sync. If
the threshold is high, the probability of false loss of sync is
low, or, equivalently, the time between false losses of sync is
long. On the other hand, a high threshold will also make the
short run length (or the time between loss of sync and detec-
tion of that loss of sync) large.

We first consider the influence of short run length on sys-
tem performance. There is an obvious reason to want the short
run length to be small: the sooner after a loss of sync that the
system gets back on track, the better. But there is another rea-
son as well. Voyager has a concatenated coding scheme: after
the convolutional code is Viterbi decoded, an additional code,
the Reed-Solomon code, is decoded. As far as the Reed-
Solomon decoder is concerned, the data stream during the
short run is just a stream of bad data. (Of course, if the out-of-
sync condition was caused by the deletion of a symbol, and
the node-synchronizer solves the problem by deleting another
symbol, then a whole bit has been deleted, and frame bound-
aries are lost as well. In this case, the data during the short run
can never be recovered. So we will consider the case in which
the total number of channel symbols has not been changed.
This will be true when the out-of-sync condition was caused
by a spurious loss of sync caused by the node synchronizer,
since the synchronizer will alternate adding and deleting chan-
nel symbols, and will be true half of the time anyway.) The
decoder can recover a fair amount of bad data, and so if the
short run is short enough, the Reed-Solomon decoder will be

28

able to recover it most of the time. So the length of the aver-
age short run is not so important as the probability that the
Reed-Solomon decoder will be able to recover the data in the
short run. For the k = 8 counter, assuming Viterbi burst statis-
tics for 2.3 dB (Ref. 8) and depth 4 interleaved Reed-Solomon
words, Table 4 shows the probability of decoding for a word
in a frame wholly containing a short run.

This same table shows the long run lengths (both in bits and
in time, at the reasonable Voyager data rate of 20,000 bps) for
these same thresholds, Looking, for example, at threshold 15,
we see that the probability that a word contained in a short
run will be corrected by the Reed-Solomon decoder is 2/3, and
that sync is lost incorrectly every two days.

Can we do better? In fact, by going to k =16, we can do
much better. Table 5 shows this same information with & = 16.
With & =16 and threshold 14.5, a word which is in a frame
attacked by a short run will decode correctly with probability
0.86, and the mean time between false losses of sync (average
long run time) is 6.7 years.

These numbers were obtained by simulation methods
explained in Appendix B.

Several other questions can be asked about the performance
of the counter. What if a short run hits more than one frame?
With &k =16 and threshold 14.5, the probability that a short
run hits more than one frame is 0.033. And even if the short
run does intersect more than one frame, the probability that
it causes a word error in each frame is less than 0.005. Thus,
the probability of a decoder error in each of two consecutive
frames because of a spurious loss of node synchronization is
less than 0.0002.

Another question is the probability of some loss of data
due to a short run. We saw that in the case k = 16, threshold
14.5, the probability that any one word fails to decode is 0.14,
but since decoding failures in the four words are by no means
independent, this does not tell us the probability that there is
some loss of data—that is, that one or more of the four inter-
leaved Reed-Solomon words fails to decode. In the case
k = 16, threshold 14.5, this probability is 0.19.

References

. Deutsch, L. J., and Miller, R. L., “The Effects of Viterbi Decoder Node Synchroniza-
tion Losses on the Telemetry Receiving System,” TDA Progress Report 42-68, Jet
Propulsion Laboratory, Pasadena, Calif., Aug. 15, 1981,

. Deutsch, L.J., and Miller, R. L., “Viterbi Decoder Node Synchronization Losses in
the Reed-Solomon/Viterbi Concatenated Channel,” TDA Progress Report 42-71,
Jet Propulsion Laboratory, Pasadena, Calif., Nov. 15, 1982.

. Liu, K.Y, and Lee, J.J., “An Experimental Study of the Concatenated Reed-
Solomon/Viterbi Channel Coding System Performance and Its Impact on Space Com-
munications,” Publication 81~58, Jet Propulsion Laboratory, Pasadena, Calif., Aug. 15,
1981.

. Golomb, et al., Digital Communications with Space Applications, Prentice Hall,
1964, Chapter 7.

. Greenhall, C. A., and Miller, R. L., “Design of a Quick-Look Decoder for the DSN
(7,1/2) Convolutional Code,” DSN Progress Report 42-53, Jet Propulsion Laboratory,
Pasadena, Calif,, Oct. 15, 1979.

. Lorden, G., “Procedures for Reacting to a Change in Distribution,” Annals of Mathe-
matical Statistics, 42, No. 6, 1897-1908, 1971.

. Feller, W., An Introduction to Probability Theory and Its Applications, John Wiley
and Sons, 1968.

. Miller, R. L., Deutsch, L.J., and Butman, S. A,, On the Error Statistics of Viterbi
Decoding and the Performance of Concatenated Codes, Publication 81-9, Jet Propul-
sion Laboratory, Pasadena, Calif., Sept. 1, 1981.

. Siegmund, D., “Importance Sampling in the Monte Carlo Study of Sequential Tests,”
Annals of Statistics, 4, 673-684, 1976.

29

30

Table 1. Dependence of information numbers on symbol error

probability
r o I I, I
0.08 0.5875 0.0154 0.0155 0.0309

0.10 0.5537 5.78x 1073 580x 1073 0.0116
0.12 0.5321 207%x 1073 207x10°3 4.14x 1073

Table 2. Average run lengths for various thresholds

/] T I m Short ARL Long ARL
0.1 0.5537 0.01157 10 118 547
15 205 2,062
20 296 6,693
0.08 0.5875 0.03091 10 88 1,164
15 145 7,496
20 202 44,850

Table 3. Information numbers

k Total Out-of-sync In-sync
16 0.0862 0.0601 0.0261
8 0.0633 0.0406 0.0228

Table 4. Counter performance with k=8

Mean short run,

Probability that a Reed-Solomon

Mean long run

Threshold bits word in a short run will decode Bits Time
5 116.6 0.98 6.1 x 10% 3 seconds
10 238.6 0.86 5.2 X107 43 minutes
15 363.3 0.66 4.5 %1010 26 days
16 387.6 0.62 1.7 x 1011 100 days
18 438.0 0.52 2.6 x 1012 4 years
20 487.4 0.43 3.8 x 1013 60 years
Table 5. Counter performance with k=16
Threshold Mean short run, Probability that a Reed-Solomon Mean long run
bits word in a short run will decode Bits Time
5 88.6 0.99 5.9 % 106 5 minutes
10 171.4 0.95 7.9 X 102 4 days
11.5 196.4 0.93 6.0 x 1010 35 days
13 221.7 0.90 5.0 x 1011 290 days
14.5 246.9 0.87 4.2 x 1012 6.7 years
18 305.1 0.77 6.1 x 1014 960 years
20 338.8 0.71

1.0 x 1016 16,000 years

31

Appendix A

Proofs

This appendix gives mathematical proofs of the statements
made in Section I

We use the same random processes to model the situation:
() ..., M_,, My, M, ... an iid. process, P (M, = 0) =
P(M, = 1) = 1/2, representing the message; (2) ..., E_,,
E_,, Ey, E|, ... an iid. process, P(E, = 1) = symbol error
probability, representing the errors in the received sequence
and independent of the sequence ..., M_,, My, M, ...;
(3)...,R,,R_{,Ry, R, ..., the convolutionally encoded
M;’s added to the £}’s, representing the hard-quantized received
channel symbols; and (4) ..., X_;, X,, X;, . .. the sequence
of parity checks derived from the R;’s.

Proposition: p(X, =%, X, 1 X _ (s s Xynp =Xy g0) =
[P (Xn = Xy, Xn—z = Xy e Xn—-2k = xn—2k) P (Xn—l
Xgmgs e v s Kyeagrr = Xaoaer)] -

Proof: First observe that for m odd,

p(X, = 1IX X

m=2>"m-4>""

o B By By,)= 12,

because X, is a sum of M, and other variables, p (M,, ., =
1) = 1/2, and M, ,, is independent of all the random variables

on which we are conditioning. This means that for odd m

p(Xm =X, X, s =X e
- = —f-1
X 00 =Xl BB E L)=2 a.s.

for any sequence (x,,, X,,,_5, - - -, %, _q¢) Of zeroes and ones.
But the values of the even parity checks are determined
entirely by ..., E_,, Ey, E{, ..., and so are independent of
the odd parity checks.

Notice: (1) The fact that we looked at a sequence of odd
length was convenient for notation but had no effect on the
proof. (2) We showed not only that the even and odd parity
checks are independent, but that the odd parity checks are
themselves i.i.d. with probability 1/2 of success. (3) The same
result holds for the measure g, reversing the roles of even and
odd.

Corollary: p(X, = x,|X,_{, X5, ..) =0 (X, =x,|X,_,,

X,_4,-..), and the same for q. If nis odd, p (X, = x,|X,,_,,
Xygs..)= 12 forevenng (X, =x,1X,_,,...)=1/2.

32

Definition: The one-sided, pseudo parity check sequence
Xy, X,, ... is the parity check sequence based on the process
50,0, R, Ry, Ry, ... That is, X, =R1,Y2 =R, + R,
X3=R3+R,,..., X, =X, forn>14.

Proposition: Every event of the form (X, =x,, X, =x,,...,

X, = x,) corresponds to exactly one event (R, =1r,, ...,

Rn = n)'

Proof: The X;’s are derived from the R;’s. Going backwards,
knowing X, tells you R,, and knowing X; and R,, ..., R,_,
tells you R,

Corollary: A loglikelihood counter based on the X’s will
always contain exactly the same value as one based on the
R}’s.

Proposition: 1f I, is the information number of any log-
likelihood counter with inputs based on the last m outputs of
any discrete random process and / the information number
with increments based on the indefinite past, then lim [,, = 1.

n—r oo

Proof: For simplicity, we give the proof for random variables
taking on the values zero and one. The proof for random
variables taking on finitely many values is exactly the same.

Let..., Y ,, ..., Y, Y,,...be the stationary process.
(In our case, the Y;’s are pairs of hard-quantized received
channel symbols). Let

(PO Y Y0
LoD =18 \ 1oy =71Y Y, Y10

where y is chosen from the probability space on which the Yi‘s
are defined and j is zero or one.

It is a standard result of Martingale theory that

lim £,04) = fO)

. (p(Yo=j|Y_1,-~)(y)
T\ a0)

and so by the dominated convergence theorem

i ﬁ b, ¥,0)] dp = ff . Y,0)] dp,

and the same for integration with respect to ¢. But these are
just the information numbers for the counters.

Notice: A logdikelihood counter using & parity checks
based on parity checks X will, after time 2k + 14, have exactly
the same increments as a log-likelihood counter using & parity
checks and based on parity checks X, because the values of
X and X are exactly the same starting at time 14.

Theorem: As k approaches infinity, the information in the
log-likelihood counter whose increment at time # is

p(Xn =xn|Xn—2’ coe ’Xn—2k+2)
q (Xn =xn IXn—Z’ cre ’Xn—2k+2) ’

log

kept separately for » even and odd, approaches all the sync
information in the hard-quantized received channel symbol
stream R, R,, ...

Proof: As m goes to infinity, the information in a counter
C(1) based on past of length 2k of the hard-quantized received
channel stream approaches all the information in the stream.
The vatues in C(1) are exactly the same as would be in a
counter C(2) based on the past of length 2k of the (nonsta-
tionary) parity checks)?t For n > 2k + 14, the increments in
counter C(2) are the same as those in a counter C(3) based
on the probabilities of (X,1X,_,, ..., X,_4;). But, since
even and odd parity checks are independent, this is exactly
the same as the counter of the theorem,

33

Appendix B
Simulation of ARL’s

The performance figures of Section III were obtained by
simulation, The short ARL’s were simulated directly by
generating independent symbol errors with probability p,
computing the resulting parity check stream, and feeding it to
the counter with threshold <. Direct simulation of the long
ARL’s is not feasible, however, because (as the results show)
the time required to generate a statistically useful sample of
long run lengths would be too great,

The long ARL’s were simulated by a modification of a
standard technique called “importance sampling” (Ref. 9),
in which the process to be analyzed — in this case, the parity
check sequence — is generated using a probability distribution
Q different from the distribution P for which results are
desired. In our case, P specifies independent 50-50 results
for the out-of-sync parity checks — so that the time for the
counter to reach a distant threshold 7 is quite large. A distribu-
tion @ was chosen to make the counter reach the threshold
more quickly — namely, independent parity checks with
probability of failure 7*, substantially less than 1/2.

The method of importance sampling is based on the simple
fact that for any event, 4, the probability of 4 under P can
be obtained from simulations carried out under the distribu-
tion Q. The key is provided by the identity

P(A)=.[dP= [(%) Q.

Here the quantity dP/dQ is the Radon-Nikodym derivative of
P with respect to Q, which in our application is simply the
likelihood ratio

(B-1)

P(X,)---P(X,)
X)) - Q(X,)

of the parity checks X, - .., X, up to the time that 4 occurs.
Since P (X)) = 1/2, and Q (X;) = n* if X, =1 (failure),= 1 - #*
if X; = O (success), relation (1) can be made more explicit.
Using EQ to denote expectation under Q, it takes the form

34

1\ 1 \s
P(4) = E, (%) (2(1_ﬂ*)) 1{4}|, (B2)

where F and S are the numbers of failures and successes,
respectively, in the out-of-sync parity checks up to the time
that 4 occurs, and 1 {4} = 1 if 4 occurs, = 0, otherwise.

The simulation of the long ARL was based on the defini-
tion of a counter cycle: Starting from a given state s* of k
zeroes and ones, the cycle ends the first time that the counter
resets to zero with the same sequence s* in its memory. Let
T denote the time (number of symbol pairs) for a cycle to
end and let &V denote the number of cycles until the threshold
v is crossed. Then using a standard result called Wald’s equa-
tion (Ref. 7, Vol. II, p. 567), we have

long ARL = EN - ET .

(Actually, the right side gives the expected time until the end
of the first cycle on which v is crossed, but the extra time to
end the cycle after crossing is negligible compared to the long
ARL.) The quantity ET was easily simulated directly, since
when the parity checks are random the cycles end fairly
quickly (and don’t depend on v at all). The evaluation of
EN was based on

S
BN = 5oay

where A = {y is crossed} for a given cycle, and P (A4) was
simulated using the method of importance sampling, as
described above.

Importance sampling was used to estimate P (A4) in several
independent sets of simulations. Not surprisingly, the esti-
mates were more stable for smaller thresholds. After all the
data were gathered, a least squares line was drawn through the
points representing small thresholds (see Figs. B-1 and B-2).
These lines were used for the long ARL’s in Tables 4 and 5.

LOG]_0 BITS TO FALSE ALARM

LOGIO BITS TO FALSE ALARM

18 T T T T — T T T T T T T T T T

4 6 8 10 12 14 16 18
NODE-SYNC THRESHOLD

Fig. B-1. Mean time to false alarm, k=16; least squares line from thresholds 4,
5,6,and 7

20

16 T T T T T T T T T T T T T T T

4 6 8 10 12 14 16 18
NODE-SYNC THRESHOLD

Fig. B-2. Mean time to false alarm, k=8; least squares line from thresholds 5,
10, and 15

20

35

