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This paper presents a new syndrome decoding algorithm for the (n, k) convolutional
codes (CC) which differs completely from an earlier syndrome decoding algorithm of
Schalkwijk and Vinck. The new algorithm is based on the general solution of the syn-
drome equation, a linear Diophantine equation for the error polynomial vector E(D).
The set of Diophantine solutions is a coset of the CC. In this error coset a recursive,
Viterbi-like algorithm is developed to find the minimum weight error vector E (D). An
example, illustrating the new decodingialgorithm, is given,for the binary nonsystemmatic

(3,1)CC

l. Introduction

In this paper, a new syndrome decoding algorithm is
developed which is analogous to the syndrome decoding
algorithm of block codes. This new decoding method differs
completely from that invented in 1976 by Schalkwijk and
Vinck (Ref. 1).

In order to develop the new syndrome decoding algorithm
it is necessary to first review and further treat the algebraic
nature and structure of convolutional codes (CC). This back-
ground is then used to find the general solution of the syn-
drome equations for the error polynomial vector e(D) where
D is the unit delay operator. In particular it is shown that
these syndrome equations are linear Diophantine equations
over the ring of polynomials F {D] in D and with coefficients
in a finite field. The method for solving linear Diophantine
equations for the integers is generalized and used to solve the
syndrome equations for e (D).
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The set of Diophantine solutions of the syndrome equa-
tions constitutes a coset of the convolutional code space or
group. The problem of syndrome decoding is to find the
minimum-weight polynomial vector (D) of this coset to
subtract from the received polynomial vector z (D) té yield
an estimate (D) of the transmitted polynomial vector. In
order to find €(D) efficiently, a new recursive, Viterbi-like
algorithm is devised. This new syndrome decoding algorithm
is presented in this paper by example.

For a fixed convolutional code the new recursive syndrome
decoder for a CC appears to be comparable in complexity to
the Viterbi decoder except that in the new decoder fewer
comparisons are required and the control logic is considerably
simpler. However, if one wishes to design a CC decoder for
several different rate codes of the same constraint length, it
appears that the principles of the new syndrome decoder may
yield a simpler system than could be achieved using the Viterbi




technique. For variable rate communication systems that
utilize convolutional codes the new syndrome decoding con-
cept appears to have an advantage over the standard Viterbi
decoding techniques. A precise quantification of this compari-
son is a topic for future study.

Il. Algebraic Structure of Convolutional
Codes

Let 4, a;, @, - ** be any sequence of symbols from the
finite field ¥ = GF(q) of q elements, Further let D be the unit
delay operator. D operates on a function x(n) of discrete
time » in accordance with the definition

Dx(n) =x(n-1) (1)

for all n. In terms of D the sequence {aj} is conveniently
represented by what is called its D-transform,

AD) =a,ta D+ag D>+, (2)

in powers of the operator D.

The input to a convolutional encoder is a set of & discrete-
time input sequences. In terms of D-transforms this input is
represented by the vector

x(D) = [x, (D)%, D)., x, D)] ®)

where X; (D) =Xo; + %, D+x,; D>+ for(j=1,2, -, k)
with coefficients in GF (q). (see Refs. 2, 3).

Very simply, an encoder for a CC is some /inear sequential
circuit over the finite field GF(q) with vector input x (D) and
vector output

y)=1ly, D)y, D), .y, D) C)]

where #n > k and y, (D)=y0,+y1,.D+y2rD2 + - for
1 <r < n. For the standard (n, k) convolutional code ((n, k)
CC) the linear relationship between the input and output is
assumed to have finite memory so that it can be expressed as
a matrix convolution of form

y(D) = x(D)G(D) &)

where G (D) is a k X n matrix of polynomials of finite degree
in D over GF(q). G(D) in (5) is usually called the generating
matrix of the (n, k) CC of k/n rate CC. G (D) has the specific
form, as a k X n matrix,

g, (D), g,D) . g, D]
&, D), &, D) ", £,, (D)
G(D) - 21. 22. 2 2
£, D) 8, D) g, (D)_
(6)

The maximum degree M of the polynomials in G (D) is called
the memory, and the constraint length of the code is L =
M+1.

The elements of G (D) in (6) are polynomials in D over the
finite field F = GF(q). The set of all such polynomials in D
over a field F is an infinite ring F [D] as well as an integral
domain since it has no divisors of zero. It can also be demon-
strated that F [D] is a Euclidean ring, e.g., see Ref. 4, sec-
tions 3.7 and 3.9.

If the elements of G(D) in (6) are restricted to members
of field F, the rows of G(D) generate an n-dimensional vector
space over field F. However, since G(D) is a £ X n matrix
with elements in F [D], the integral domain in D over F,
G (D) generates what is called a module over the ring F [D].
A module has the same postulates as a vector space except
that its scalars are elements of a ring rather than a field.

To characterize the algebraic properties of different gen-
erating matrices G (D) over integral domain F [D] we follow
the lead of Forney in Ref. 3. Forney bases his study of CC on
the well-known invariant-factor theorem of matrices over an
integral domain. The statement of this theorem is reproduced
for ring F [D] as follows:

Invariant-Factor Theorem: If F [D] is the integral domain
and G(D) is a k X n matrix over F[D], then G has the
invariant-factor decomposition or Smith normal form?!,

GD) = AD)T (D)B(D) (7)
where A (D) is a k¥ X % matrix over F [D] with an inverse
A1 (D) with elements in F [D]; B(D) is a n X n matrix over

F[D] also with an inverse B~! (D) with elements in F [D];
and I’ (D) is a £ X »n matrix over F [D] of form

) = [, (D), 0] ®

1The invariant-factor theorem was developed by the British mathe-
matician H. J. S. Smith in the middle of the 19th century.
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with 0, a & X (n - k) matrix of zeros and I (D) a diagonal
matrix

I, @) = diag [y, D)7, @), 7, @] O

The diagonal elements v; (D) in (9) for 1 < i<k are
elements of F[D] and are called the invariant factors of
G (D). The invariant factors are unique and can be computed
as follows: Let Ay = 1. Let A, be the greatest common divisor
(GCD) of all i X i subdeterminants (minors) of G. Then
v, (D) = AJA,_,. If v,y (D) # 0, then v, (D) divides v,,,
D)fori=1,2,---,k-1.

Forney in Ref. 3 sketches a proof of this theorem. Other
more elementary and detailed expositions of this theorem
can be found in certain classic works on modern algebra, e.g.,
see Ref. 5, Sec. 10, Ch. III. Rather than give a proof of this
theorem it is perhaps better to illustrate its use with an
example.

For an example let F = GF(2) and consider the generating
matrix,

GD) = G =

1 1+D 1+D v, (D) 0 0
=4 B

1+D D 0 0 v, (D) ©

(10)

where 4 is a 2 X 2 matrix and B is a 3 X 3 matrix, both over
F[D]. It is shown in Appendix A that the invariant-factor
decomposition or Smith normal form of G (D) in (10) is

G(D) = ATB =

: o1l o o 1 1+D L+D
0 1+D+D* 1+D?

1+Dp 1fJlo 1 0 0 14D D

(11)

Let the generating matrix of a CC have the invariant-factor
decomposition in (7). Then the output of the encoder in (5)
can be expressed as

y(D) = x(DYGD) = x(D)AD)TD)BD) (12)
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where A (D) and B(D) have inverses 4! (D) and B! (D),
respectively, and I'(D) is the k X n matrix defined in (8).

For the encoding operation in (12) to be useful in the
context of a communications system it is desirable that the
mapping of k-vectors x (D) onto n-vectors y (D) over F [D]
be one-to-one and reversible. For this to be true there must
exist a right inverse matrix G~1 (D) of matrix G (D). If G-1
(D) exists, then

yD) G (D) = xD)GD) G (D) = x(D)], = x(D)
(13)

where L is the k¥ X k identity matrix and x (D) is uniquely
recoverable from the encoded message y(D). It will be assumed
henceforth that the generating matrix G (D) has a right inverse
and that this inverse is realizable in finite delay time.

By the invariant-factor theorem G (D) = 4 (D) I' (D) B(D).
Thus for G™! (D) to exist uniquely the last invariant factor
of I'(D) must not be zero, i.e., 74 (D) # 0. For otherwise, if
Y (D) = 0, then G (D) would have rank less than ¥ and as a
consequence G~ (D) would be nonunique.

Ify, (D) # 0, then it can be verified that

G (D) = BT (D)T* (D)4™" (D) (14)

is the right inverse of G (D) where I'*(D) is an #n X %k matrix
with diagonal elements 'yi“l (D) of form

I} @
(D) = (15)

0
with l": (D) the inverse of r, (D) in (9); i.e.,
I (D) = diag [v]' (D), %, (D), - -+, vt (D) (16)

If deg v, (D) >0, then by (16), (15) and (14) the circuit to
realize (13) would not be feedback-free.

Massey and Sain (Ref. 6) proved that an inverse G (D)
or some delayed version of it must be feedback-free in order
to avoid CC that give rise to catastrophic error propagation.
To avoid this problem it is desirable to make G~ (D) feedback-
free. If G™1 (D) is feedback-free, deg Y, D)=0andy, (D)=
¥, D) vy (D) = 1. Hence I" (D) must have the form

r'®D) = [I,,0] (17




where I, denotes a k¥ X k identity matrix and O denotes a
k X (n - k) matrix of zeros.

The above properties needed for a useful encoder are
recapitulated in the following definition of a basic encoder
given by Forney (Ref. 3).

Definition: A basic encoder G (D) is a CC with a feedback-
free right inverse G~! (D). Both G (D) and G™! (D) are poly-
nomial matrices over F [D] such that G(D)G™! (D) = I.

It was shown in detail by Forney (Ref. 3) and briefly above
that an encoder is basic if and only if it is polynomial over
F[D] and has all its invariant factors equal to one. Hence-
forth in this paper only basic encoders for a CC will be treated
so that by (17) and the invariant-factor theorem the generat-
ing matrix for an (n, k) CC has the form

GW) = AD) [,,0] BD) (18)

where I is the & X k identity matrix.

Forney [Ref. 3, Appendix I] exhibits a parity-check matrix
H(D) over F[D] for a generating matrix which is equivalent
to G(D) in (18). It is shown here that this parity-check matrix
is, in fact, the parity-check matrix of all generating matrices
equivalent to (18) in the sense of Forney.

To treat the parity-check matrix the Euclidean ring F [D]
is extended to the field F(D) of quotients or rational func-
tions of polynomials in F [D]; e.g., see Ref. 5, Sec. 3.8. In
terms of sequences field F (D) is in one-to-one correspondence
with the field S of all possible infinite sequences that can be
generated by an impulse passed through all finite memory
linear circuits with or without feedback.

Let gV (D), g D), , 2% (D) be the k rows of matrix
G (D) in (18). Since G (D) has rank k,

k
V= ; o, (D)? (D) 1 o; (D) e F(D)

is a k-dimensional vector space with respect to the field
F(D) of scalars of its equivalent, to the field S of sequences.
The null space V' of V is a vector space with field F(D) of
scalars of dimension n - k (see [Ref. 7, Sec. 3.2]).

Let H(D). be a matrix with coefficients in F [D] C F(D)
of rank # - k& which has its row space equal to V. Evidently
any set of basis vectors in V+ can be used to find H(D) with
components in F [D]. The rows of H(D), found by this

means, constitute a basis for VL, Thus ¥ is a null space of pi
if and only if for any vector, y (D) e V,

yDYHT D) = 0 (19)
Since £ (D) e ¥ for 1 <j < k condition (19) implies,
GDYHT (D) = 0 (20)

An explicit method due to Forney (Ref. 3, Appendix I)
for constructing a parity matrix H (D) of all generating matrices
G (D) with form (18) is now given. The coefficients of the
parity-check matrix H(D), developed by this technique, are
polynomials in D, i.., elements from the Euclidean ring
F[D].

Let the first & rows of matrix G in (18) be a submatrix B,
and the last (z - k) rows of B be a submatrix B, . Then B is the
matrix

= T

B = [B, 8] (21)

in terms of submatrices B, and B,. Similarly denote the first
& columns of the inverse matrix B~! of B by B’ and denote

the last (# - k) columns of B! by B'2. Then the inverse of B
is the matrix

B = (B, B)] (22)
Multiplying (21) and (22) yields
'] ’
B B, B B, L, 0
BBl = = (23)
BB, 5,8, 0, Lk
and the matrix identities,
! LA .
BlBl = Ik; Ble = 07
(24)
(. L
B,B, = 0, BB =1 .
Let
HD) = &))", (25)

where T denotes transpose and B, is defined in (22), be a
candidate for the parity-check matrix of G (D) in (18). Multi-
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plying G (D) in (18) by the transpose of H(D) in (25) pro-
duces by (21) and (24),

A1[L,0] (B, B,17 B,

f

G(D)HT (D)
(26)

i}

(4,01 [0,7,_ 1T =0

Since the n - k rows of H(D) are the # - k columns of the
invertible matrix B™! (D), these rows must be linearly inde-
pendent. Thus H(D), as defined in (25), has rank (» - k) and
is a valid parity-check matrix for the general basic encoder
G (D), given in (18). H(D) is clearly not unique since a matrix
- of form H, (D) = H(D) C(D), where C (D) is a nonsingular
matrix with elements in F [D], is also a parity check matrix.

A parity-check matrix H(D), associated with the general
k X n generator matrix G (D) of a basic encoder, is given by
(25). However, for two special cases, the systematic (n, %)
CC and the nonsystematic (n, 1) CC, a parity-check matrix
can be found more directly. For example, for the systematic
(n, k) CC the parity-check matrix has form G (D) = [L,, P(D)]
where Z_is the k X k identity matrix and P(D) isa k& X (n - k)
matrix of polynomials over F = GF(q). In this case it is
readily verified (Ref. 7) that H(D) = [-PT (D), I, _,] is a
parity-check matrix.

The generator matrix for the nonsystematic (n, 1) CC has
by (6) the form

G(D) = [g, (D)5, (D), g, (D)] @7

where for simplicity the first subscript of g, , (D) has been
dropped. Condition (20) for the (1 X n) generating matrix
G (D) in (27) is easily shown to be satisfied by the (n- 1) X n
matrix

H(D) = [L(D),R(D)] (28)

where L(D) = [g, (D), & (D), -, &, (D)] T and R(D) =
diag [g, (D), g, (D), " ,'g, (D)], so that it is a parity-check
matrix of the (1, 1) CC generated by G(D) in (27).

To illustrate how to use (25) to compute a parity-check
matrix consider again the example of a generating matrix,
given in (10). By (A~2) in Appendix A the matrix B! for this
Gis
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1 1+D D+D?
Bl = 10 D 1+D? (29)
0 1+D  1+D+D?
so that by (22) and (25)

H(D) = (B,)" = [D+D? 1+D? 1+D+D?], (30)

the transpose of the last column of B! in (29). It is easily
verified that (30) satisfies (20), ie., G(D) HT (D) = 0, and
that H(D) is of rank one. Hence H(D) in (30) is the parity-
check matrix of the (3, 2) CC with generating matrix G (D)
in (10).

In the next section the parity-check matrix will be used
to obtain the syndrome of the received CC. A new decoding
algorithm will then be presented by example.

lll. Solutions of the Syndrome Equation for
Convolutional Codes

Let p (D) be transmiited CC in accordance with (5) where
G (D) is the generating matrix for a basic encoder. Next let
z(D) = y(D) + e(D) be the received code possibly corrupted
by an error or noise sequence e(D). The syndrome s{(D) of
z (D) is defined by

s(D) = z(D)HT (D) (31)
where H (D) is syndrome (28) for the basic encoder.
Substituting (5) in syndrome (31) yields
s) = (D) +eDYHT (D)
= eD)HT (D)+x(D)GDYHT (D) (32)

But by construction (20) is satisfied; i.e., G(D) HT (D) = 0.
Hence the last term of (32) vanishes and

s(D) = e(DYHT (D) (33)

is the syndrome in terms of an error sequence or polynomial
e(D). The syndrome for a basic (n, k) CC is by (33) totally
independent of the transmitted coded message y (D). Syn-
dromes for block group codes also have this property so that




one might suspect that it is possible to use syndromes to
decode CC in a manner similar to that used for block codes.

The first step towards achieving this goal for CC is to find
the general solution for e (D) of the syndrome equation (33),
assuming that s(D) is computed by (31). That is, given s (D)
by (31), solve for the set of all solutions e (D) of the syndrome
equation (33).

To find the general solution of (33) again use is made of
the important invariant-factor theorem of the last section.
This theorem is applied to the transpose of the parity-check
matrix, HY (D) in (33). By construction the rank of H(D)
is n - k, the maximum possible rank. By the invariant-factor
theorem

HD) = RT (D) [A,0] LT (D) (34)

where L (D) and R (D) are invertible # X nand (n-k) X (n-%)
matrices over F (D),

A = disg(A, Ay A, ) (35)

H n—

and “0” denotes a k X (n - k) matrix of zeros. The ?\l.’s in (35)
are the invariant factors defined as follows: Let §_ = 1, let
§; be the GCD of all j X j minors of H(D). Then A= 8//6 j-1
and Aj divides )\j+l forj=1,2,---,n-%k - 1. Hence the
transpose of H (D) in (34) has the Smith normal form

HT (D) = L(D) [A,0]T R(D) (36)

A lemma, due to Forney (Ref..3, Appendix I), is used to .

evaluate the diagonal matrix A of invariant factors in (36). In
the present terminology this lemma is stated as follows:

Lemma (Forney): The (n - k) X (n - k) minors of H(D)
are equal up to scalar field elements in F = GF(q) to the
k X k minors of G (D).

Since the basic encoder has a generating matrix G (D) of
form (18), the & X k¥ minors of G (D) have a GCD equal to 1.
Hence by Forney’s lemma the (# - ¥) X (n - k) minors of
H(D) also have a GCD equal to 1. Thus 1 =6, _, =68, _,_, =
-+ =8, and the invariant factors of H T (D) are all 1. There-
fore, A=1,_, and by (36)

HT D) = LO)[I,_,. 01T R(D) (37)

-k’

is the Smith normal form of the transpose of a parity-check
matrix for a basic encoder.

To solve for e(D) first substitute expression (37) for H7
(D) into (33). This yields

s(D) = e@LD)[I,_,,01 " R(D) (38)

=Kk’

Next multiply both sides of (38) by R™! (D) to obtain
o(D) = sD)R™ (D) = [e(D)LD)] [,_,, 017 =
e D) [4,_,:017 (39)
where
o) = sDYR(D) = [0, (D), " ,0,_, (D)] (40)
is an (n - k)-component transformed vector of S (D) and
¢(D) = eDLWD) = [e, (D) ,e, D] (41)

is an n-component transformed vector of the unknown poly-
notial error vector e (D).

The component-by-component solution of (39) is obtained
by equating components of the equation

€ D) = o, (D) for

1<j<n-k (42a)

and

¢ D) = D) for

tj_n+k( n-k+1<j<n (42b)

where 2, (D) for 1 <7 <k is an arbitrary polynomial in the
Euclidean ring F [D].

Substituting (42a) and (42b) into the right side of (41)
and solving for e (D) yields finally

e = le,D), e, D)
= o, @), *,0,_, (D)1, (D), -1, (D)]
L (43)

as the general solution of the syndrome equation (33) in terms

of the n - k components of the transformed syndrome o (D)

in (39) and k arbitrary polynomials parameters ¢, (D) of F [D]
. 7

forl <j<k.
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Some examples of the above technique for solving the
linear Diophantine equations of the syndrome equation are
now presented. Consider first the generating matrix

GD) = [1+D% 1+D+D? 1+D+D?] (44)
of a (3, 1) CC with constraint length 3. Using the Forney
method developed in the last section a parity-check matrix
for G (D) is readily calculated to be

1+D+D?%  1+D?% 0O
HD) = (45)
1+D+D?* D2, 1
The Smith normal form for H7 (D) is given by
1 0 o]”
HT (D) = L (46)
0 1 0
where the inverse of L is
D 1+D D
Lr=1]o0 0 1 47
1+D? 1+D+D? 1+D+D?

Substituting (45) and (31) the syndrome is s(D)=
2(D)HT(D). Hence by (33) and (46) the syndrome equation to
solve is

100]7
s(D) = [5,(D),5,(D)] = (le,(D), e,(D), e,(D)] L)

010

1007
= [¢,D), (D), &,(D)] [ ] (48)
010
By (42a, b) the solution of (48) for ej-(D) is
e,(D) = 5,(D), &,(D) = 5,D), ;D) = D)  (49)

where (D) is an arbitrary element of F[D]. Finally the e,(D)
in terms of the solutions (49) is, using (47), [e,;(D), e,(D),
e3(D)] = [5,(D), 5,(D), t(D)] L1. This yields

46

e,(D) = Ds,(D) +(1+D*)#(D)

e,(D) = (1+D)s (D) +(1+D+D?)1(D) (50)

e,(D) = DS, (D) +5,(D)+(1+D +D*)t(D)

as the general solution of the syndrome equation (31) for the
(3, 1) encoder in'(44).

Another example of the general method for finding the
general solutions of the syndrome equation is given in Appen-
dix B for the (3,2) CC with generating matrix (10). It is
shown in the next section by an example how to use the
solutions of the syndrome equation to perform optimum syn-
drome decoding.

IV. Syndrome Decoding of (n,k) CC

Syndrome decoding of an (n, k) CC involves finding a
maximum likelihood estimate (MLE) €(D) of the actual error
sequence in the coset, determined by (43), of all possible
solutions of the syndrome equation (31). In order to accom-
plish this, both the weight or distance between codewords of a
sequence and the type of channel need to be defined. For an
(n, k) CC a possible error sequence is of form e(D) = [e,(D),
ey(D), - -+, e,(D)] where e;(D) for 1 <j<n are finite degree
polynomials over GF(q). The usual weight for a discretized
channel is the Hamming weight. The Hamming weight of e(D)
is

Wy le@] = 3 Wy le,D)] (51)
i=1

where Wy, [e]-(D)], the Hamming weight of ej(D), is the num-
ber of nonzero coefficients of ej(D). It is convenient for this
weight to assume that the channel can be approximated by a
g-ary channel (see Ref. 2, Sec. 7.2).

If in (3) deg [x;(D)] < L-1 for 1 <j<k, codeword
yD)= D), y,(D), - - -, y,,(D)) is said to be the Lth trunca-
tion of an (n, k) CC (see Ref. 2, p. 203). In this case

deg [y,(D)] SM+L-1 for1<i<n (52)
where M is the memory. Hence an L truncated (n, k) CC can
be considered to be a block code where each word has length
n(L + M). Hence for a truncated (n, &) CC the MLE of an error
vector is what it would be for a linear block code. For a
truncated (n, k) CC transmitted over a g-ary symmetric chan-
nel the MLE of e(D) is any vector e(D) of form (43) such that




W, [eD)] = min
£,(D), +, £,(D)

(WH[[GI(D)’ Tt Un-k(D)’

t,(D), -+, DN LI D)]) (53)
The above procedure for finding the MLE 2(D) or the error
vector, needed to correct a codeword, is equivalent to the
usual technique for correcting block codes, e.g., see Ref. 7,
Sec. 7.5. A recursive technique is developed now by example
to perform the minimization required in (53). The iterative
minimization procedure, needed to efficiently find 2(D), is a
Viterbi-like or dynamic programming type of algorithm.

As an example of the new syndrome decoding algorithm

consider the (3, 1) CC with the generating matrix in (44). If
(44) is substituted in (4), then

> 2,5 75] = [x +D%x,x + Dx + D?x, x + Dx + D?x]
(54)
is the output of the encoder. Assume the input sequence is
x=[01001 0]

Then by (54),

y1=[01011010],

y2=[01111110],
and

y3=[01111110]

are the three components of the transmitted sequence. Let the
corresponding three received sequences be

z,=[11011010],
2,=[01011110]; (55)
2, =[01101110]

Next substitute the parity-check matrix (45) of the (3, 1)
CC in (31) to obtain
s, = 1+D+D¥)z +(1+D?)z,
(56)
- 2 2
s, = (1+D+D%)z +D%z, tz,

as the syndrome of the code. A calculation of the syndromes
in (56) in terms of the received sequence [z, z,, 23] in (55)
yields the syndrome sequences

s, =[110010000],

1

(57
[111110000]

ta
i

for this example. Given the syndrome sequences (57) it is
desired now to solve syndrome equation (33) for the vector
sequence e(D).

The explicit general solutions of the syndrome equation in
(33) for the components of e(D) were found in (50) of the last
section. These solutions are explicitly

e, = Ds, +t+Dt

e, =5, +Ds +t+Dr+D%t (58)
- 2

ey = Ds ts, +t+Dt+D%t

where ¢ is an arbitrary polynomial in F[D] and where for
simplicity in notation the functional dependence on D of such
functions as s,(D), (D), etc., is deleted. Note that physically
the functions Ds,, D2, etc., in (57) can be interpreted as the
function s, (D), delayed by one time unit, and the function
1(D), delayed by two time units, respectively.

The problem now is to find from (58) and the given
syndrome sequences (57) the maximum likelihood estimate €
of e=[e,, e,, e;]. As in the Viterbi decoding algorithm € is
found iteratively or sequentially with the aid of a trellis
diagram (see Ref. 8). In the present case, the underlying trellis
diagram is “universal” in the sense that it is identical for all
{(n, k) CC of fixed k and constraint length L.

For the present example the states of the trellis diagram are
equivalent to the states of the shift register needed in (58) to
store sequentially the delayed versions D#(D) and D2#(D) of
the arbitrary function ¢#(D) on F. The block diagram of a shift
register to hold D¢ and D?¢, the function ¢, delayed by one
time unit and two time units, respectively, is shown in Fig. 1.
The state table of the shift register in Fig. 2, when conceived
to be a sequential circuit, is given in Fig. 3. Finally, in Fig. 3
the trellis diagram of the state table in Fig. 2 is presented. A
solid-line transition in Fig. 3 corresponds to the input #(D) = 0;
a dashed-line transition corresponds to the input #(D) = 1.

The new Viterbi-like syndrome decoding algorithm is illus-
trated by example in Fig. 4. The digits of the syndrome
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sequences §; and s, computed in (57) are placed immediately
over the corresponding transition paths of the trellis. The
vectors [e;, e,, e;] are computed at each stage from
Egs. (58), using the syndrome data for s;, Ds; and s, and data
t, Dt and D?¢, depending on the particular path taken.

To illustrate the above procedure, suppose that the algo-
rithm has reached stage 2 at state d=11. At stage 2 the
required values of the syndrome sequence needed in (58) are

s;=0, Ds;=1 and s,=1 (59)
Since the previous two values of ¢ leading to state d at stage 2
are 1,

Dr=1 and D?*t=1, (60)
If the +=0 branch is taken in the trellis from stage 2 and
state d, a substitution of Egs. (59), (60) and r =1 into (58)
yields [e, e,, e;] = [0, 1,0] as the values of e along that
segment of the path which has attained stage 3 at state b.

After stage 2 in Fig. 3 there are always two possible transi-
tions leading to a given node in the trellis. The transition
chosen is the one of minimum weight. This is precisely the
technique of dynamic programming to determine a minimum
weight path. A similar method is used in the Viterbi-algorithm
to find a transmitted codeword that is closest in Hamming
weight to the received codeword.

The trellis diagram shown in Fig. 4 is completed by the
above illustration and the dynamic programming rules for
choosing the “survivor” segment of path. At state 9 the
minimum weight path in the trellis diagram of Fig. 4 is clearly
acdbcbaaaa. The branches of this path yield 8(D)=
[¢,(D), €,(D), &,(D)] = [1,D?,D?] as the estimate of error
vector e(D). Subtracting these estimates of the error from the
components of z in (55) produces

$,=[01011010]
$,=[01111110] (61)
$,=001111110]

The Smijth: ﬁormaf form of the (3, 1) CC generating matrix
G(D) in (44) is G(D) = [FF0. 0] B where

1+D 1+D+D? 1+D+D?
Bt =(p 10> D?
0 0 1
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Thus the estimate X(D) of message in terms of the estimate of
the transmitted codeword $(D) is ¥ =%G=%[1 0 0]B. Solv-
ing this relationship for X,

£ =96 = 3B71[1,0,017
1+D 1+D+D?* 1+D+D? | [1
0.9, 7,1 D 1#D*  14D? 0
0 0 1 0

= (1+D)y, *D9, (62)

since by (14) G~ = B™1[1,0,0] T is the right inverse of G. A
substitution of the estimates of :v‘l and ?2 in (61) into (62)
yields finally ¥= [0 1 0 O 1 0] as the estimate of the origi-
nal message.

In the above example the new syndrome decoding algo-
rithm produces the original message. However, if the number
of errors exceeds the free distance d, within any interval less
than some multiple of the constant length, there may exist
two or more paths of the same minimum error weight. In such
a case a decoding failure and an erasure should be declared.

V. Conclusions

In this paper a new syndrome decoding algorithm for an
(n, k) convolutional code with a basic encoder is found. To
accomplish this, the method of Forney is extended and used
to find the syndrome H(D) of any basic encoder with gener-
ating matrix G(D). Next, a general method based on the Smith
normal form for matrices over the Euclidean ring F[D] is used
to solve the syndrome equation for all possible error vectors
e(D). This general solution of the syndrome equation for an
(nk) code is shown in (43) to have the explicit form, e(D) =
[0, (D), . D), D)., 1, (D)L7I(D)  where
t (D) for l <z < kisan arbltrary polynom1a1 in the F[D] and
aI(D) for 1 <j<n-k are computable linear functions of the
(n-k) syndromes s, (D), .. ., s, _, (D).

To complete the new syndrome decoding algorithm, a
Viterbi-like algorithm is developed to find the minimum
Hamming-weight error-vector (D) of all solutions of the syn-
drome equation. &(D) is the maximum likelihood estimate
(MLE) of e(D) within the coset of all solutions of the syn-
drome equation. The estimate 2(D) is subtracted from the
received codeword z(D) to obtain the MLE $(D) of the trans-
mitted codeword. Finally, the method of Forney (Ref. 3) and
Massey and Sain (Ref. 7) is extended and applied to the basic




encoder to find the inverse circuit needed to obtain the trellis are somewhat simpler in the new decoder. An advantage

decoded message ¥(D) from $(D). of the new encoder is the ease with which codes of the same

constraint length, but with different rates, can be switched.

The new syndrome decoder for the (n, k) CC developed Detafled comparisons of the new syndrome decoder with the

herein is comparable in complexity to the Viterbi decoder. Viterbi decoder for both low and high rate codes are clearly
The control logic and the computations associated with the topics for future study.
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Fig. 2. State table of shift register for ¢{(D)

Fig. 3. Trellis diagram of shift register for (D)
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TRUNCATED AT DEGREE k

Fig. 4. A new Viterbi-like syndrome decoding algorithm for (3,1) CC
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Appendix A

In this appendix an example of the invariant-factor decom-
position for a generating matrix is given. It is shown that
matrices A and B in (10) can be obtained by elementary row
and column operations, respectively. The elementary opera-
tions are of three types (see, for example, Ref. 5):

(1) The interchange of any two rows (columns) is called an
elementary operation of type 1.

(2) Let any row (column) be multiplied by an element ‘of
F[D]. The addition of this result to any other row
(column) is called an elementary operation of type 2.

(3) The multiplication of any row (column) by a nonzero
scalar of F[D], i.e., a nonzero element of F is called an
elementary operation of type 3.

One procedure for finding A and B in (10) is to express
(10) in the form,

100
1 14D 14D 10
]= Glo1o (A-1)
4D D 0 01
001

and reduce the left side to the form of I in (10) by elementary
transformation. To put zeros in the second column of the first
row multiply the first column by 1+ D and add the result to
the second column of the matrix on the left. This same
transformation is performed at the same time on the 3 X 3
identity matrix on the right side of the equation. The result is

11+D 0} 1 00
1, O, 1+D 10
[ ]=[ :|G(D)01 ojlo10
1+D, 1+D+D?%, 0 01

01 1}{oo1

where on the right a new 3 X 3 identity matrix multiplies the
elementary transformation matrix

1 1+D 0
01 0
00 1

of type 2. Proceeding step by step in this fashion it is readily
verified that the left side of (A-1) reduces finally to
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11+D 0| [10 1+D
100 1 0
r'= = Goy|o1 o 010
010 1+D 1
00 1 001
100] [too0}[too0]fro0
x lo11 o10|llo1o0f|lo1p
001 o11)JloD1 001
r
1 1+D D+D?
1 0
= G®) |0 D 1 +D2
1+D 1
|0 1+D 1+D+D?2
= A"V (D)YGWD)B! (D) (A-2)

For F = GF(2) it is easy to verify that an elementary matrix
E over F[D] is its own inverse, i.e., E~! = F for an elementary
matrix of types 1, 2 or 3. Thus solving for G in (A-2) yields

100 1001100

1 01100
GD) = 01D 010|010
1+D 11010

001 op1]]o 11
1 00] MO1+D)[11+D O

X lo11 01 0 01 0
001] |00 1 00 1
) } 1 1+D 1+D
1 olf100 v

= 01+D+D2 1+D?
L1+D 1Jlo10

01+D D
= AD)T(D)BD) (A-3)

as the invariant-factor decomposition of G(D) in (A-1).




Appendix B

In this appendix an example for finding the general solution
of syndrome equation for the (3, 2) CC is given. Consider the
parity-check matrix, H(D)= [D+D?, 1+D? 1+D+D?],
found in (30) for the (3, 2) CC with generating matrix (10). A
diagonalization of HT (D) yields for this example

0 1+D D
L'@®= |1 D+D? D*+D*| (B-1)
0 1+D+D?* 1+D?

where L(D) is the left invertible matrix of the Smith normal
form in (37) for HT(D). In this case the syndrome equation to
solve for e(D) is

s(D) = [e, (D), e, (D), e, D)] L [1,0,0]7

(8-2)

i}

It

[e, D), e, D), 5 (D)] [1,0,017

The solution in (B-2) for (D) is

e, (D) = s(D), ¢,(D) = t,(D), ¢, = ,(D) (B-3)

where ¢,(D) and t,(D) are arbitrary elements of parameters of
F[D]. Solving e(D) L = ¢(D) for e(D) in terms of the solution
(B-3) for e(D) is, using (B-1)

[e, (D), e, (D), e; (D)] = [s(D),?; (D), 1, (D)]

0 1+D D
X 1 D+D? D+ D3
0 1+D+D* 1+D?

which yields, upon an equating of coefficients,

e, (D)= 1, (D)

e,(D)= (1+D)sD)+(D+D* ¢t (D)+(1+D+D?*) ¢ (D)
e,(D)=Ds(D)+(D*+D*t,(D)+(1+D*)1,(D)  (B-4)

as the general solution of the syndrome equation (31) for the
(3, 2) encoder in terms of two arbitrary parameters £, (D) and
t,(D) in F [D]. 1t is a straightforward exercise to verify that
(B-4) satisfies (31).
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