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This article presents an analysis of the scalloping problem for the case of Gaussian
noise statistics. We derive the optimal weighting strategy for linearly combining two ob-
servations in adjacent beam areas, and compare the sensitivity and scalloping for this
weighting strategy with that realized using a single observation or using equal weighting of
two observations. We also calculate the variation of the probability for detecting ETI
signals with scan separation for the various weighting strategies, assuming that the trans-
mitters are of equal strength and are uniformly distributed throughout space.

l. Introduction

One component of the Search for Extraterrestrial Intelli-
gence (SETI) will be a survey of the entire celestial sphere over
a broad frequency range to a significantly low limiting flux
(Ref, 1). The inherent advantage of this strategy is that all di-
rections are observed, and thus any signal which exceeds the
threshold of the search will be located. The SETI program
must design an efficient sky survey strategy which realizes
the survey goals within the constraints of available antenna
resources.

Time constraints and antenna dynamics dictate that the
survey will be carried out by smoothly sweeping the beam
across the sky. At the end of each scan, the motion must be
reversed without exciting the antenna’s natural modes of
mechanical oscillation. At the same time the pointing in the
orthogonal direction must be stepped so that the subsequent
scan traverses a neighboring strip of the celestial sphere. Over
a period of time, all of the celestial sphere available to the
antenna will have been observed. Unless care is taken in the

design of the survey, however, the sensitivity to an ETI signal
will be a periodic function of position with respect to the scan
pattern. This feature is commonly referred to as scalloping and
its magnitude is defined to be the quantity of minimum sensi-
tivity minus maximum sensitivity.

This article is one of a series of technical reports proceeding
from the SETI sky survey definition studies and presents an
analysis of the scalloping problem for the case of Gaussian
noise statistics and ETI sources whose signal strength does not
change with time, We derive an optimal weighting strategy for
linearly combining data in two adjacent beam areas and then
compare the sensitivity and scalloping achieved using this
strategy with that realized utilizing practical weighting strate-
gies. Finally, we derive the variation with scan separation of
the probability for detecting ETI signals, assuming that the
transmitters are of equal strength and uniformly distributed
throughout space. Subsequent papers will extend our analyses
to the case of non-Gaussian noise statistics, the realm in which
the contemplated sky survey will be operating due to the small
number of independent samples comprising an accumulation.
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Il. Derivation of the Optimal
Weighting Strategy

In this section, we derive an optimal strategy for linearly
combining two observations to achieve the maximum sensitiv-
ity to a signal. To simplify the calculation, we assume a one
dimensional model (see Fig. 1). The x-axis represents the loci
of possible source positions between scan tracks, and we
search by stepping a symmetrical beam, f(x), in increments of
X, between the scans, The y-axis represents the gain of the
beam, and the scan direction is normal to the plane of the fig-
ure. Suppose that two neighboring beams straddle the source
position, x, and that the first beam is located on the origin
of the x-axis and is the nearer of the two to x,. Thus the gain
of the first beam applied to the signal, f,, is larger than that of
the second beam, f, .

The criterion for detection of the signal is an excess noise
power observed in the receiver attached to the one dimen-
sional antenna, If the beam is located far from the source posi-
tion, the noise power distribution function is Gaussian with an
expectation, <n>>, and a variance, ¢2. If the beam is near the
source position, the noise power distribution function is differ-
ent in that its expectation is augmented by the product of the
source strength and beam gain (see Fig. 2). We wish to design
an efficient algorithm to detect this signal consistent with a
previously set probability that it is caused by noise alone, ¢,
and probability of missing the signal, 3.

In the discussion which follows we shall employ the
notation:

f1 = the gain of the (nearer) first beam area at x,

P

the gain of the second beam area at x

n,,n, = power received due to background noise in
each of the two beam areas

§ = time invariant strength of the source

p, = received power from first beam =n, +f, s

p, = received power from second beam = ny, +f,s

Th = power threshold which must be exceeded to
satisfy detection criterion
o, = probability of false alarm
B, = probability of missing signal
Pr{A|B} = probability of 4 gvien that B is true
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Consider two detection algorithms:

Al. Treat each beam area independently, choosing a
threshold T, such that:

a, = Pr{p, >Th, Inoise alone} 1)
By = Pr {p <Th, Inoise +signal s, } )
Since we are assuming that f, > f,, the weakest source which

may be detected is one for which p, > Th,. Let s' be the
strength of this weakest source, thus:

s, = f, ¢ (3)

A2. Linearly combine the powers observed in the two
beams by means of a weighting function, w, and then apply a
threshold 7%, . Assume the same «, and §,, as in algorithm Al:

o, = Prip, > Th2 inoise alone} (5)
By = Prip, < Th, Inoise + signal s, } ©6)

Thus a source is detected if p; > Th,. Let 5" be the strength
of the weakest source that may be detected by this algorithm,
thus:

§5 = wfls" +(1- w)fzs" @

The analysis which follows derives the ratio of the sensitivi-
ties of these two detection algorithms. Then the weight, w, is
optimized so that s'/s" is a maximum. Since the noise is
Gaussian, p; and p, are also Gaussian with probability distri-
bution functions:

1 (p;~ <n>y?
Plp,) = exp |- — (8)
TOo o
if no signal is present; and
1 (pi - <p>- Si)2 ( )
Pp,) = exp |~ —m—— 9
! Vano 20°
if signal s, is present (where, 7 = 1,2). Similarly,
1 (p, - <n>)?
Pp,) = exp | - (10)
> 2no 202
3 3

if no signal is present; and if signal s, is present,



Py sl ep |- 2Ty
= exp |-
3 27 o, P
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where we have defined:
02 = [W+(1- w)?] o? (12)

We are now in a position to derive an expression for the
ratio of the limiting sensitivities of the two detection algo-
rithms, s'/s”, which can then be maximized to find the optimal
weight. The notation for the derivation is simplified if we
define @ _(2):

* 2
@ (2) = lexp—%di forz=0

2n

Assuming that f;>f,, for strategy Al we see from Egs. )
and (8) (the noise only case):

Th ~<n>
o, = Pr {pl >Thlls1 =0} = d, — (13)

and from Egs. (2) and (9) (the signal present case):

5, +<n>-Th
B, = Pr{p, <Th s >0} =q>0(———————‘-)
2

(14)

On the other hand, for strategy A2 we see from Egs. (5)
and (10) (the noise only case):

Th,~<n>
ay = Pri{p,>Th s, =0}=®, e (15)

and from Egs. (6) and (11) (the signal present case):

()

5, +<n>- Th,
By = Pr {0y <Thyl5, >0} =0 (=g

(16)

Now recall that we required o to be the same for both
algorithms. Thus Egs. (13) and (15) are equal:

Th . <n> Th2 - <n>
o N 0,

Similarly, we require §, to be the same for both algorithms.
Thus Eqgs. (14) and (16) are also equal:

17)

g [0

s, +<n>-~-Th s, +<n>-Th
3

Combining Eqs. (17) and (18), we have s,/s5 = 0/0;. We may
use this result and Egs. (3), (7), and (12) to find the ratio of
the sensitivities of the two detection algorithms:

= w+——2—(1—w)
5’ 5
= = Flw) 5 —m8m8m— (19)

w? + (1 - w)?
We derive the optimal weighting strategy for combining the

two responses so that the ratio of the sensitivities for the two
detection algorithms is maximized by solving dF(w)/dw = 0:

f;

Wopt A (20)

Since we have no foreknowledge of the position of the ETI
source, we must employ our assumption that the signal
strength is time invariant and rewrite Eq. (20) in terms of the
received power and instantaneous noise power:

A
ovt = (o, - 1) * (0, - 1)

w

(1)

The noise powers contained within the observed powers are
not available to the observer and can only be estimated by
calculating the expectation value. A subsequent paper
(Lokshin, in preparation) will show that the optimal weighting
strategy cannot be used to increase the signal to noise ratio
due to the presence of cross products between the error in the
estimation of the weights and the difference between the two
received powers. The optimal weighting calculation does, how-
ever, give us a theoretical limit which we may use to judge
practical weighting strategies.

Ill. Some General Results

We shall compare the theoretical limit to the enhancement
of sensitivity and minimization of scalloping realized by the
optimal weighting strategy to the sensitivity and scalloping (1)
achieved by utilizing a single observation and (2) achieved by
combining two observations with equal weights.

Suppose the sky survey could detect an ETI source of
strength, s, if the center of the beam passes directly over the
source position. What would be the sensitivity if two adjacent
scans- bracket the source position? Obviously, if information
from only one beam area is used (strategy Al) the detectable
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signal is a function of the distance the source is offset from the
nearer beam center (beam number 1 is assumed to be nearer):

s,y = s, lAx) = s,lf, (22)

Substituting Eq. (22) into (19) we find the expression for the
detectable signal if one or two beam areas are used with arbi-
trary weighting: -

s N

0 o VWP (1~ w)
"(x) = =
R ENE )

wi v a-wy, B

This expression can now be employed to compare the peak
sensitivity and scalloping as a function of x, for arbitrary
weighting strategies, wherein it is assumed that the sky survey
is carried out by scanning along parallel tracks which are sepa-
rated by x,.

Note that if w = 1, Eq. (23) reverts to Eq. (22), the single
beam area case. This choice leaves the survey exposed to the
full effect of scalloping inherent in the interscan separation,
On the other hand, if we combine information from two beam
areas in adjacent scans, the variation in detectable signal
strength with x can be decreased. In the case in which the two
beam areas are weighted equally without giving attention to
the strength of the signal in each we find:

so\/f
fith

S = (24)

This choice of weighting function minimizes the scalloping in
sensitivity at the price of degrading the peak sensitivity. Of
course, application of the optimal weighting strategy achieves

So

AREE

Given the symmetrical beam shape, f(x), these expressions
may be evaluated for all x to determine the relative sensitivi-
ties of the three strategies and their scalloping as a function of
X,. In fact, we have done so for the case in which the beam
shape is a Gaussian of arbitrary half power beam width
(HPBW):

s'(x) = (25)

fx) = exp [—41n 2) (HP’EW)Z} (26)

Figure 3 shows the relative sensitivities as a function of x
of the three strategies for a scan separation, x, = 1 HPBW. The
x-axis is shown only over the range 0 < x; < X, since the
response is symmetrical about either limit. For the case in
which data from only a single beam area is used, scalloping is
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3 dB. For the case in which data from two neighboring beam
areas are combined with equal weight, scalloping is reduced to
0.34 dB. This is achieved at the cost of a loss in peak sensi-
tivity of 1,17 dB relative to the single beam result due to
averaging data containing almost no signal with data having the
maximum signal to noise ratio. For the case in which the
optimal weight has been used, scalloping is reduced to 1.5 dB
while peak sensitivity is enhanced 0.01 dB relative to the single
beam result.

Figure 4 shows the relative sensitivities as a function of x;
for a scan separation, x,, = 0.75 HPBW. Scalloping for the sin-
gle beam case is reduced to 1.7 dB whereas scalloping for the
equal weight case is increased to 0.48 dB and the loss in peak
sensitivity relative to the single beam result is decreased to
0.2 dB. Note that the larger scalloping is due to a greater
enhancement of sensitivity between the beam areas than at
their centers. This effect was just barely noticable in the pre-
ceeding figure, Scalloping for the optimal weight case is re-
duced to 0.3 dB and the peak sensitivity is enhanced by 0.1 dB
relative to the single beam result.

Figure 5 shows the variation of scalloping as a function of
x, for the three weighting strategies. For large x, the improve-
ment in scalloping over that resulting from a single beam is
3 dB for equal weighting and 1.5 dB for optimal weighting.
Note, however, that minima occur in the scalloping for the
equal weighting and optimal weighting cases. For a scan sepa-
ration smaller than 0.95 HPBW, the sensitivity to a source
located between equally weighted scans increases faster than
the sensitivity to a source located at the center of either scan
as the scan separation is decreased. Thus the nonuniformity in
sensitivity increases with decreasing scan separation until a
substantial overlap is achieved. A similar phenomenon occurs
for the optimally weighted scans after x,, shrinks below 0.65
HPBW.

Figure 6 shows the variation of the peak sensitivity as a
function of x, relative to that achieved using only a single
beam. The optimal weighting strategy always achieves a better
sensitivity than a single beam, albeit the improvement is not
very great for x, = 0.65 HPBW. The equal weighting strategy
peak sensitivity has already dropped halfway to its asymptotic
minimum at x, ~ 0.85 HPBW,

The vaniations in scalloping and peak sensitivity shown
in Figs. 5 and 6 are key considerations in the design of a sky
survey strategy and will impact the survey sensitivity, given the
constraints on antenna time and available memory and pro-
cessing power. The sensitivity of the survey can be increased
by (1) dwelling longer in each beam area, (2) decreasing the
scan separation, (3) combining data from neighboring beam



areas, or (4) combining all three options. Each option has its
price, however,

In the first option, the time to complete the survey in-
creases as the square of the ratio of new to old sensitivities,
but the scalloping is not affected. In the second option, the
time increases directly as the ratio of old to new scan separa-
tions increases and the scalloping is reduced. In the third
option, survey time is not affected and scalloping is reduced,
but memory and processing requirements increase and peak
sensitivity may suffer depending upon the manner of combina-

. tion chosen. The fourth option will always be chosen, but the
mix will vary depending upon the constraints under which the
survey will operate.

IV. The Effect of Scan Separation inthe Case
of Uniformly Distributed Transmitters
and Fixed Survey Time

Plausible arguments may be advanced for any number of
assumptions about the spatial, power, duty cycle, and trans-
mitted frequency distribution functions for signals of ETI
origin, Given a set of assumptions, a survey may be tailored to
maximize the probability that it will detect a signal of that
class. Many reasonable scenarios have been advanced in the
literature, but the great advantage of an all sky survey lies in
the fact that it incorporates the fewest a priori assumptions.

We now consider the impact of scan separation and weight-
ing strategy upon the probability of detecting an ETI signal.
The calculation requires that some assumptions be made about
the distribution of sources and the manner in which the survey
will be carried out. In the light of real life constraints for a sky
survey and our state of ignorance concerning possible ETI
sources, we shall follow in the footsteps of Drake (Ref. 2) and
Gulkis (Ref. 3) and assume that:

(a) AnM X N HPBW? area of the sky is to be surveyed in a
fixed time, 7.

(b) The transmitters are of equal strength and are distrib-
uted uniformly throughout space.

Suppose that our hypothetical sources each have an effec-
tive isotropic radiation power, P, and the boresight gain of the
antenna is G. If a particular source is a distance, R, from earth
and is displaced relative to the boresight by a distance, x, the
flux seen by the receiving system in one beam area which is
due to the source is

G-P

4nR?

* f(x) (27

s(x) =

If the source is to be detected, this flux must be greater than
or equal to the minimum detectable flux, s'. Thus, the source
will be detected if it is closer than the distance R, :

. 1/2
R (x) = [—%’ - f(x)] (28)

Equation (19) may be substituted into (28) to find the
expression for the maximum distance if the weighted data
from two beam areas are used. We must keep in mind that
f(x) is really f, in Eq. (19), and we must explicitly show the
dependence upon the integration time, 7, since s, ~ 771 2;

] 1/2
R0 ~ [ EE s ron v T 9

The number of detectable transmitters (and thus the proba-
bility of detecting one) is proportional to the volume of space
observed:

8Pr{detection} ~ 8V = R2 8Q (30)

Substituting Eq. (29) into (30), we have:

GP 3/2
8Pr{detection} ~ [ST] 314 {f(x) « F(w)}312 68
(3D
Assumption (a) may now be applied as a constraint so that
the effect of the scan separation, x,, upon the probability of
detecting a signal may be evaluated. The simplest survey
strategy entails making scans which are N HPBWs long, step-
ping by X, in the orthogonal coordinate until a distance of
M HPBWs is covered, Thus the number of scans is equal to
M]x,. The integration time is set equal to some fraction of the
amount of time required to scan through one HPBW, and we
shall assume here that the fraction is unity. Thus the total time
allowed for the survey (assuming zero time between scans)
must be:

T:.]-..W_.
xO

N-7 (32)

Solving for 7, we may now integrate Eq. (31) over all x to
derive an expression for the probability of detecting a signal
as a function of scan separation:

1/4 3/2
Pr{det lx0 }~ [JZI—Ni] [GP;"/TjI

0

dx

f 11250 [wf(x) + (1 - wiftr, - x) >/
X2

0
(33)
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Figure 7 shows the variation of a normalized Pr{detec-
tionlx,} with x, for the three weighting strategies. The
normalization is chosen so that the maximum relative proba-
bility for the optimal weighting strategy is unity. As x, be-
comes larger, the scans can be slowed down and still allow the
survey to cover the same area of sky in the given time limit.
However, the scalloping in sensitivity increases with x, and
degrades the probability of detection. For very small values of
x,, the optimal weighting and equal weighting strategy
improve the probability over that achieved by the single beam
strategy by the expected ratio of 23/4 due to the effective
doubling of integration time on source. As the scan separation
increases the single beam area strategy approaches the optimal
result and the equal weighting strategy falls off to the ex-
pected ratio of 1/2 due to doubling of the noise.

The relative probabilities of detection for the single beam
strategy and the equal weighting strategy are equal for a scan
separation of about 0.8 HPBW, and are degraded relative to
the optimal result by approximately 15%. The probability of

detection achieved by the equal weighting strategy peaks at a
scan separation of 0.6 HPBW, and it is degraded from the
optimal peak by 8%. The probability of detection achieved
by using a single beam area peaks at a scan separation of 1.3
HPBW, and it is degraded from the optimal peak by 5%. It is
clear that the scalloping allowable in a survey will depend
upon the assumptions of the designers of the search strategy.

V. Suggestions for Further Analysis

It is possible to extend the foregoing analysis to cover the
general case of combining N beam areas. Of more immediate
concern, however, is an extension to the case of a non-
Gaussian noise statistic. The contemplated high speed all sky
survey will operate in this domain due to the small number
(4 <n < 100) of independent samples which will be combined
before thresholding. A series of papers is in preparation which
will cover this topic.
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