TDA Progress Report 42-81

January—March 1985

An Integrated UNIX-Based CAD System for the
Design and Testing of Custom VLSI Chips

L. J. Deutsch
Communications Systems Research Section

This article describes a computer-aided design (CAD) system that is being used at the
Jet Propulsion Laboratory for the design of custom and semicustom very large scale
integrated (VLSI) chips. The system consists of a Digital Equipment Corporation VAX
computer with the UNIX operating system and a collection of software tools for the lay-
out, simulation, and verification of microcircuits. Most of these tools were written by
the academic community and are, therefore, available to JPL at little or no cost. Some
small pieces of software have been written in-house in order to make all the tools interact
with each other with a minimal amount of effort on the part of the designer.

l. Introduction

The design of VLSI chips would be impractical without the
use of CAD tools. This is because the typical VLSI chip that is
designed at JPL currently comprises at least 5,000 transistors
and in some cases this number is as large as 50,000. In addition
to this, each of the six to ten mask layers that correspond to
steps in the fabrication process must be defined for these
chips. In order to facilitate the design of VLSI chips on a com-
puter, a standard file format for the description of these mask
layers was developed at the California Institute of Technology.
This description is called the “Caltech intermediate form”
(CIF) (Ref. 1). Many chip fabricators will now accept a com-
puter file in CIF format and implement the design on a silicon
wafer. In fact, CIF has recently become an industrial standard
as well as a university standard for chip description.

The primary purpose of a VLSI CAD system is to allow a
designer to specify a chip in some convenient fashion and to
produce a file in CIF format that may be sent to a fabrication
service. The process of defining the CIF file is called “layout.”
In addition to layout, there are secondary functions that a

good CAD system should perform. One of these is design veri-
fication. This consists of an automated check, performed on
the chip description, against a set of rules that are fabrication-
dependent. These rules might include both “design rules” and
“electrical rules.” Design rules refer to geometrical constraints
on the masks themselves and arise from tolerances and mate-
rial limitations in the fabrication process. Electrical rules refer
to the interconnection of transistors. One example of an elec-
trical rule would be a limitation on device fan-out.

A good CAD system should also contain simulators that
allow the designer to “run” a chip in software and hence
verify that it performs the desired function. Simulators can
take many different forms from low-level programs that model
only the digital switching of a transistor, to high-level pro-
grams that use very complex models of the transistors. Since
the execution time of a simulator depends on its level, several
different levels of simulation should be present on the CAD
system,

Tools should also be present that allow the same tests that
are performed on the chip design with the simulators to be

51

used on the finished chip itself. This involves a hardware
interface from the CAD system computer to a chip testing
device.

In addition to the above tools, a complete system will
include programs for creating commonly-used subcircuits
with a minimum amount of effort. Such subcircuits might
include input and output pad drivers, programmable logic
arrays, read-only memory (ROM), and simple logic gates.

Much CAD tool development has already been done by
universities in support of their own VLSI designer training
efforts. This software development is sponsored in part by
the Defense Advanced Research Program Agency (DARPA).
DARPA also supports the MOSIS (Ref. 2) chip fabrication
service that is run by the Information Sciences Institute of
the University of Southern California. Because of JPL'’s
standing as a research facility and its involvement with cer-
tain DARPA contracts, the university tools and MOSIS fab-
rication are available to users here at no cost. The CAD tools
are written to run on Digital Equipment Corporation VAX
computers with the UNIX (Ref. 3) operating system.

A CAD system has been assembled using these university
tools as part of the DSN Advanced Systems Program. A
VAX 11/750 computer was purchased along with an inex-
pensive binary license for UNIX (A binary UNIX contains
no source code and hence no ability to modify system soft-
ware). Software was obtained from many sources including
Caltech, MIT, the University of California at Berkeley (UC
Berkeley), Carnegie-Melon University, and the University of
Washington. Some additional pieces of software were written
in-house so that the various tools can communicate with each
other. This CAD system is used to support both the design
of custom and semicustom chips and for the evaluation of new
CAD tools as they become available, Some of the chips that
have been designed on this system include a multicode con-
volutional encoder (Ref. 4), a Reed-Solomon encoder (Ref. 5),
a syndrome generator for a Reed-Solomon decoder (Ref. 6), a
Fermat number multiplier (Ref. 7), and a Massey-Omura
multiplier (Ref. 8).

In the following sections, the various software tools in the
system will be examined in more detail. They will be grouped
according to their function. An overall block diagram of the
software CAD system is shown in Fig. 1. Several file formats
are used to represent data on the system. One is the CIF
format mentioned above. In UNIX, the format of the file is
indicated in its name as a string of characters at the end of
the name preceded by a period. Hence the computer file
“file.cif” would be in CIF format. Other formats used on the
system include “.ca” or “caesar format” for a layout graphics
file and “.sim” for a file containing wirelist data. These con-
ventions will be used in the remainder of this article.

52

Il. Layout

The primary layout tool on the CAD system is a program
called “caesar” (Ref.9). It was written at the University of
California at Berkeley. Caesar requires the use of two com-
puter terminals. One terminal may be one of a variety of high
resolution (at least 512 X 512 pixels) color terminals. An
Advanced Electronics Design AED-512 terminal is used on
this CAD system. The second terminal is a regular CRT-type
such as the DEC VT100. In addition to the terminals, caesar
may optionally employ a digitizing tablet to help speed up
data entry. All commands are entered either from the tablet
or the text terminal. The graphics terminal is used only to
display the portion of the chip design that is being edited.

Caesar is basically a powerful graphics editor, It allows the
user to place, move, modify, copy, and delete colored rec-
tangles on the graphics screen. These colored rectangles form
a pictorial representation of the various mask layers in the
designer’s chip. Caesar allows the editing of arbitrarily large
designs by including the ability to zoom in and out of the
design and to pan across it. The user can save any part of the
design being edited in a file on the computer disk. This file
is in .ca format. These .ca files can be called back to the
graphics screen to create large hierarchical designs. In addi-
tion, the designer may place textual labels on the masks so
that they may be referred to in verification and simulation
software. Figure 2 is a photograph of the caesar graphics
display. It exhibits the hierarchical nature of the caesar
program.

The digitizing tablet greatly increases the speed at which
designs may be accomplished with caesar, There are four
buttons on the tablets “cursor” (a device similar to the
“mouse” on many personal computer systems), Two of these
are used to position the lower left and upper right corners of
a white box on the graphics screen. A third is used to fill in
that box with a color. The fourth is used to locate subcells
in the chip design and to descend into the hierarchy for
editing purposes.

Caesar has been used by various universities to design
successful chips with as many as 100,000 transistors. There is
no theoretical limit to the size of a chip that may be designed.
Caesar is also “technology independent.” This means that
it may be used to design chips for fabrication in any VLSI
process (e.g., NMOS, CMOS, and GaAs). Caesar accomplishes
this by reading data files for each of these technologies. New
data files may be easily created by the designer as new fabri-
cation processes become available. This means that caesar will
never be obsolete. In fact, two additional technologies have
been added to caesar here at JPL. These are the Sandia Na-
tional Laboratory’s CMOS process and a GaAs process that
is compatible with the Rockwell fabrication line.

Caesar produces a .cif file as output. This file may be sent
directly to fabrication, or subsequent software testing may be
performed on it. In addition, an in-house program called
“ca2cif” has been written to convert .ca files to .cif format
without having to run caesar. This means that the user need
not have access to a high-resolution graphics terminal to per-
form this function.

Caesar has one important limitation as a layout tool.
Because caesar creates all designs out of rectangular elements
that are aligned with the axes of the graphics display, chips
may not contain any curved or slanted geometry. Such chips
are said to be of ‘“Manhattan geometry.” Chips that are
designed with curves and bends in them are considered to
have “Boston geomeiry.”

Any .cif file that represents a Manhattan design may be
edited with caesar. This is accomplished by running the pro-
gram “cif2ca.” Cif2ca produces a .ca file that corresponds
to the original .cif file.

There are many programs available for creating hardcopy
plots of chip designs from a .cif file. Such plots are invaluable
in checking long line interconnections on large chips. Two
programs have been evaluated on this CAD system. One of
these, “mcp” form UC Berkeley, is used to create color
plots on a Trilog color printer/plotter. This device is a slow dot
matrix printer that uses a four-color ribbon. It takes about
20 minutes to produce one page of a low-resolution plot
with mep. Also, since the “m” in mcp stands for Manhattan,
mcp can plot only Manhattan designs. The second program is
called “cifp” and comes from Caltech. This program drives a
Hewlett Packard eight-color pen plotter on the JPL CAD
system (it can also drive other devices). Cifp is capable of
plotting Boston geometry chips.

lll. Design Rule Checking

Two programs that perform design rule checking have been
evaluated on the CAD system. The first is a program from
Carnegie Mellon University called “drc.” This program works
only on NMOS chips and so it has been replaced by the
second program, “lyra” (Ref. 10), from UC Berkeley.

Lyra checks a file in .ca format against a set of rules that
describe the limitations of a particular fabrication process.
These rules describe, for example, the minimum sizes of
transistors and interconnections, the minimum distances
allowed between various structures, and the allowed dimen-
sions of via cuts between interconnection layers, Notice that
these are all rules that pertain only to the geometric properties
of the design. They have nothing to do with the functional
behavior of the circuit that is represented by this geometry.

Lyra rules for new technologies may be written by the
user, Hence lyra is technology independent. A set of rules for
the Sandia CMOS process have been written here at JPL. The
program itself is an expert system that checks the .ca file
against the set of rules. Any errors are recorded in a new .ca
file that includes the old one as a subcell. When this new file
is examined using caesar, the design errors appear as black
rectangles that are labeled with the appropriate error message.
Alternatively, lyra may be run directly from caesar. In this
mode, the tablet cursor is used to position caesar’s white box
around the area to be checked. A command is then typed
from the text terminal and, after a short delay, the errors are
displayed on the graphics screen, Figure 3 shows a photograph
of a caesar graphics screen that has been checked with lyra.

Lyra, like caesar, runs on chips with Manhattan geometry
only. This allows lyra to execute very quickly — as much as an
order of magnitude faster than more general design rule
checkers. Because of this constraint, lyra needs only to check
the rules at the corners of the colored rectangles.

IV. Extraction

In order to perform either electrical rule checking or
simulation on a chip design, a functional description of the
chip must be derived from the .cif file. This is done by a
program called an “extractor.” On this CAD system, the
extractor program is called “mextra” and it comes from UC
Berkeley. The “m” in mextra stands for Manhattan so mextra
operates under the same constraint as caesar and lyra. Mextra
is not technology independent, though. It can only extract
NMOS and CMOS chips. The ability to switch easily between
NMOS and CMOS extraction was added here at JPL. The
output of mextra is a file in .sim format. Each line of this file
describes a device (e.g., transistor or capacitor) and how it is
interconnected with other devices in the design. Mextra labels
all the electrically different nodes of the design. This is done
arbitrarily except for those that have been previously labeled
with caesar. These retain their previous labels.

Since many of the tools that use .sim files as input report
errors by node number, there is a program called “mexnodes”
from the University of Washington that allows the designer to
see all the node numbers using caesar.

V. Electrical Rule Checking

The software for electrical rule checking on the CAD
system is called “erc” and it comes from the Boeing Corpora-
tion. It works only on NMOS chip designs. The rules that it
checks are not easily modified, This is not as serious a prob-
lem as one might expect since electrical rules do not vary

53

much between different NMOS fabrication processes. Also,
CMOS circuits are far more robust with respect to electrical
rules than NMOS circuits. It would be preferable, however,
to have an electrical rule checker with the same kind of
flexibility as the lyra design rule checker,

The erc program needs both a .cif file and a .sim file for the
design that is to be checked. In addition, the user can supply a
third file that locates the inputs and outputs to the design. The
presence of this last file can prevent many erroneous errors.
There are many options that may be used when running erc.
It is possible to have erc search for only selected rule viola-
tions in this way. Erc produces two outputs. The first is a text
file that explains each error that it has found. The second is a
.cif file that contains the original .cif input file with added
labels that indicate the errors. This latter file may be examined
by running cif2ca and looking at the result with caesar.

The erc program has been helpful in detecting errors on
ratioed NMOS logic. These errors, if not detected by erc,
could have been found only by running a very-high-level
simulation program or by testing the finished chip.

VI. Simulation

There are many simulation programs on the CAD system.
This reflects the fact that careful simulation of chip designs
in software can lead to chips that work on the first fabrica-
tion iteration. The time that is invested in a thorough soft-
ware simulation is more than made up for in reductions in
chip testing and redesign time.

There are five simulation programs that are currently used
by chip designers on the CAD system. In addition, several
others have been evaluated. These programs vary in the detail
with which they perform their function.

The lowest level simulator on the system is called “esim.”
Esim is an “event-driven’ simulator that was written at MIT
(Ref. 11). The version that is installed here can simulate only
NMOS circuits although a new version exists (modified at UC
Berkeley) that can perform CMOS simulations as well. Esim
takes a .sim file for the design as input. In addition, esim
implements a comprehensive editing language for the defi-
nition of test vectors and the display of output sequences.
Esim models transistors as switches that are either open or
closed. Signals in esim may have one of three values at any
time: 0, 1, or X. An X corresponds to an unknown logical
state. Esim ignores resistors and models capacitors as if they
have an infinite charge decay time. For this reason, esim runs
at a very high speed. A chip with 3,000 transistors can be
tested with thousands of bits of test vectors in less than one
minute using esim on a moderately loaded VAX computer.

54

Because of its limitations, however, esim is only good for
checking the logic design of the chip.

A newer simulator by the same author as esim is “‘rsim”
(Ref. 12). Rsim is really a set of software tools that implement
a complete simulation system. The first of these is a program
called “netlist.” Netlist allows the user to define a circuit by
specifying interconnections between predefined logic primi-
tives. Netlist could be used, for example, by a logic designer
for software simulation of circuits that consist of off-the-shelf,
small-scale integrated (SSI) circuits. Netlist is fully inter-
active and technology independent. Its output is a file in a
format called .1 that is used by the rest of the rsim system.
A .1 file for a chip design can be extracted from a .sim file
by running an rsim program called “presim.” Once a .1 file
exists, one of two types of simulation may be run. The first is
a program called “net.” Net performs a simulation similar
to esim. The advantage to net is that the user may run a
simulation using a description generated by the netlist program
without actually having performed a layout of the circuit.
In this way, algorithms may be verified even before layout
begins. The second simulator in the rsim package is called
“rnl,” Rul has a more sophisticated model of devices than
does esim. In particular, rnl has models for resistors and
capacitors and it differentiates between sizes and types of
transistors. It produces a much more precise simulation than
rsim but it takes about five to ten times as long to run. In
addition, rnl uses the “lisp” programming language (an artifi-
cial intelligence language) as a user interface. This makes it
rather difficult to use for a first-time designer. Rnl can simu-
late both NMOS and CMOS devices.)

Because of the need to use lisp to communicate with rnl,
a user-friendly front-end program called “rsim” was written
here at JPL. Rsim takes a file in .rsim format that describes
the test vectors that are to be run through the rnl simulator.
Rsim translates this file into the lisp instructions that are
needed to run rnl, Rsim then runs rnl and produces an output
similar to that produced by esim. In addition, a second pro-
gram called “makesim” was written that allows the designer
to use a subset of the esim editor to create .rsim files. These
new programs have allowed even first-time users to take
advantage of the power of rnl.

The program “‘spice” (Ref. 13) has been around for a long
time, It was written at UC Berkeley and it has had numerous
updates and revisions. Version 2G6 of spice is on the CAD
system. Spice is the highest level simulator that is on the
system. Spice takes an input file that is written in a fortran-
like language as input. This file contains both the circuit
description and a description of input waveshapes. Spice
performs an analog-level simulation that models the entire
circuit as a set of linear equations. It is very accurate and

very time consuming. A spice simulation run for a circuit
with 200 transistors for 32 clock periods (and a 1-MHz clock
frequency) takes about an hour to complete on the VAX
11/750 computer with a floating point arithmetic accelerator
board. In addition, spice will very often fail to complete at all
if there are more than 500 transistors in the circuit. Spice is,
therefore, most applicable to the simulation of small subcir-
cuits within a chip. A spice-compatible input file (.spc format)
may be created from a .sim file by running the program
“sim2spice” from UC Berkeley. Spice is technology inde-
pendent since new device models may be added fairly easily
(as long as the new device is similar to one in a catalog of
standard device types). New device definitions usually consist
of calls to existing device models with a set of specialized
parameters.

The timing analyzer program ‘‘crystal” is a good com-
promise between the high detail of simulation that spice pro-
vides and the high speed of esim. Crystal has models for most
VLSI devices, but it does not keep track of signal values within
the circuit. Instead, crystal determines the speed at which a
signal wavefront propagates within the circuit. Crystal is a
very powerful program. It can be used to find critical paths
(those paths that have the longest delays) in a circuit. These
paths may be displayed with caesar (see Fig. 4.). In addition,
spice input files that describe these critical paths can be gen-
erated automatically by crystal. In this way, spice can be used
to simulate only the most time-critical parts of a design. This
drastically reduces simulation time,

In addition to these simulation programs, a program called
“slang” from UC Berkeley was also evaluated. The people at
Berkeley have simulated chips with more than 100,000 tran-
sistors using slang. However, slang is very hard to learn to use.
The user interface is cumbersome and the documentation is
inadequate. In addition, rsim seems to perform all of the same
functions as slang and is easier to use. For these reasons, slang
is not used by most of the designers.

VIl. High-Level Design Aids

The software described up to this point is all that is needed
to design and verify custom VLSI chips. However, the design
process can be made much easier with the addition of certain
tools called ‘“high-level design aids.” These tools generate
and assemble common circuit elements from high-level com-
mands that are issued by the designer. They free the designer
from the tedium of actually performing a detailed layout of
these basic cells and hence speed up the layout process.

One common circuit element is the “programmable logic
array” (PLA) (Ref. 1). A PLA consists of a set of AND gates
followed by a set of OR gates and it may be used to imple-

ment any combinatorial logic operation. If some of the out-
puts of the PLA are fed back to its inputs through a set of
delay elements, then the result is a “finite state machine”
(FSM). Any digital system may be implemented as an FSM.
For the remainder of this report, the term PLA will be used
to represent both PLAs and FSMs. Despite the apparent
power of the PLAs, they are not used for all possible func-
tions because they are inherently large and slow compared to
fully custom logic. However, they are extremely useful in
parts of a large chip design that are not time critical. There
are many programs that have been evaluated on the CAD
system for the design of PLA structures. In fact, there is a
comprehensive set of tools that address all aspects of their
definition and design. All of the PLA tools are from UC
Berkeley.

There are several ways that the designer can specify the
functionality of a PLA. There is a .pla file format on the sys-
tem for defining PLAs with text lines that describe the inputs,
outputs, and AND-OR connections, -as well as labels and
clocking considerations. The designer may elect to design a
PLA by simply writing such a file with a text editor, In addi-
tion, the designer can define the PLA in terms of an equivalent
set of Boolean equations. This is done by running the program
“eqntott.” Eqntott translates the equations into a .pla file.
The designer may also describe the PLA with a state diagram.
This is done by running “peg” (Ref. 14). Peg also creates a
.pla file. The .pla file can be optimized to some extent by
running the program “‘presto.” Presto eliminates redundant
logical elements and rearranges intermediate products in an
attempt to minimize the number of gates in the PLA.

Once a .pla file exists, then a PLA layout may be generated.
The program “mkfsm” converts a .pla file into a .cif file that
contains a layout of the PLA. Mkfsm, however, will produce
only an NMOS layout and, in fact, this layout is incompatible
with current MOSIS processes. Mkfsm was modified here at
JPL to resolve the process incompatibilities and it has been
used in several successful chip projects. It has been replaced
recently with a new program called “tpla.” Tpla is a PLA
layout generator that is written with the “tpack” cell assembly
package that will be described below. It is technology inde-
pendent and new technologies may be easily added by the
user. Tpla produces a .ca file as output. Tpla has some addi-
tional features that make it a very good PLA generator. Tpla

- minimizes the capacitance within the PLA (and hence maxi-

mizes the speed of the PLA) by reducing the number of
interconnections that are made with high-capacitance mate-
rials. It also calculates the power consumption of the PLA
and generates power distribution lines that are the appro-
priate size to deliver this power. The outputs of the PLA
may be optionally placed on the same or opposite side as the
inputs. Figure 5 shows a layout of a PLA that was designed

55

in less than 5 minutes using eqntott and tpla, It implements a
4-bit binary counter with reset.

The subroutine package tpack that was mentioned above is
a set of programs that may be called from a user-written C
program. They are used to place, stretch, and interconnect
predefined cells that are placed in a template file. This is a
very powerful tool for a designer who is also a good C pro-
grammer. Once basic cells have been designed, they may be
assembled into larger functional blocks (or even into complete
chips) under software control. Programs that are written using
tpack are actually silicon compilers (Ref. 15). One example
is the tpla program.

Another high-level tool is the UC Berkeley program called
“quilt.” Quilt is used to assemble arrays of rectangular circuit
elements. Quilt has been used in almost every chip design that
has been performed on the CAD system. Many high-level
design aides have been written that are basically sophisticated
calls to the quilt program. One of these is the UC Berkeley
program “visifont” which allows the designer to place macro-
scopic identifying text on a chip using any of the more than
one hundred fonts in the UNIX font catalog. Another pro-
gram that uses quilt is called “pads.” Pads was written here
at JPL and it allows the designer to define a ring of input and
output pads to place around a chip. Pads is technology inde-
pendent and templates have been written for three magnifi-
cations of NMOS and two of CMOS.

The program “rom,” which was written here at JPL, allows
the designer to define a read-only memory block by creating a
text file (in .rom format) that describes the desired contents
of the memory. Rom processes the .rom file and runs tpla
to generate the layout. Rom is, therefore, technology inde-
pendent.

One last high-level design aid that was written here at JPL
is called ‘‘title.” Title, which was written a year before
visifont, is also used to generate text on a chip. It is still used
because it is at least ten times faster than visifont. It has only
one font and it can be used only for NMOS and CMOS chips.

VIIl. Standard Cell Libraries

Once a subcircuit, or cell, has been designed, fabricated,
and tested successfully, there is no need to redesign it each
time it is needed in subsequent chip projects. For this reason,
libraries have been set up on the CAD system, so that all
designers can access .ca files for these cells. There are separate
libraries for NMOS, MOSIS CMOS, and SANDIA CMOS on
the system at this time. Each library is write protected so that
only the system manager can add to or edit the cells. Each

56

designer, however, has read access to the libraries. In fact,
when caesar is run, a pointer to the appropriate technology
library for the current design is generated. This is done
through the use of a caesar configuration file in each designer’s
directory.

The use of predesigned cells can reduce the time needed
to complete a complex chip design by orders of magnitude.

Figure 6 shows two standard cells from the SANDIA CMOS
library. The cells in this library (as well as the MOSIS CMOS
library) each have the same height, the same power distribu-
tion bus locations, and inputs and outputs that are accessible
from both the top and bottom of the cell. These cells are
designed to be assembled into rows with intercell routing
performed in the channels between the rows. This type of
design is often referred to as “standard cell” design and it
is an example of semicustom chip layout.

IX. Testing

Hardware and software are currently under development
here at JPL to allow the designer to stimulate a chip with the
same test vectors that were used for the software simulation
described in Section V. These will be described in a subse-
quent issue of the TDA Progress Report. Currently, testing
must be performed with standard test equipment such as
signal generators, oscilloscopes, and logic analyzers. The new
test station consists of a microprobe station for generating
and acquiring signals directly on the fabricated wafer and a
digital interface for connecting the chip to the CAD system
computer. A photograph of the test station appears in Fig. 7.
The microprobe equipment is complete and the hardware
interface is currently being installed, The software that will
drive the tester is being written at this time, When completed,
the test station should greatly enhance a designer’s ability to
qualify chips quickly and easily.

X. Conclusion

The UNIX-based VLSI CAD station described in this
report is a complete, integrated system for the design and
verification of custom and semicustom VLSI chips. It has
been used in the design of several successful chip projects
in both NMOS and CMOS. In fact, most of the chips that
are designed on the system work with the first fabrication.
The University CAD tools have proven to be robust and
adaptable to the needs of many JPL projects. A minimal
amount of in-house software was needed to integrate these
tools. Also, the establishment of standard cell libraries has
reduced the design time needed for new chips substantially.

Since most of the tools are technology independent, the of interconnect signals would further reduce design time. Both
CAD system will be useful far into the future. Some improve- these problems are currently being addressed at UC Berkeley.
ments will be required, however. A technology independent In fact, a new version of caesar called “magic” includes place
extractor will be needed. Also, software for automatic routing and route functions; it will be released this year.

References

1. Mead, C. and Conway, L., Introduction to VLSI Systems, Addison-Wesley Publishing
Company, Menlo Park, California, 1980 pp. 115-127.

2. The MOSIS Project, The MOSIS System (What It is and How to Use It), Publication
ISI/TM~84-128 Information Sciences Institute, Marina del Rey, California, 1984,

3. Bourne, S.R., The UNIX System, AddisionsWesley Publishing Company, Menlo
Park, California, 1983.

4. Deutsch, L.J., “A VLSI Implementation of a Multicode Convolutional Encoder,”
TDA Progress Report 42-72, Jet Propulsion Laboratory, Pasadena, California,
February 15, 1983, pp. 61-69. :

5. Truong, T.K., Deutsch, L.J., Reed, 1.S., Hsu, 1. S., Wang, K., Yeh, C.S., “The
VLSI Design of a Reed-Solomon Encoder Using Berlekamp’s Bit Serial Algorithm,”
Proceedings of the Third Caltech Conference on VLSI, California Institute of Tech-
nology, Pasadena, California, 1983, pp. 303-330.

6. Shao, H. M., Truong, T. K., Deutsch, L. J., Yuen, J. H., and Reed, I. S., “A Systolic
Design of a Pipeline Reed-Solomon Decoder,” TDA Progress Report 42-76, Jet
Propulsion Laboratory, Pasadena, California, February 15, 1984, pp. 99-113.

7. Chang, J.J., Truong, T. K., Reed, I. S., and Hsu, L. S., “VLSI Architectures for the
Multiplication of Integers Modulo a Fermat Number,” TDA Progress Report 42-79,
Jet Propulsion Laboratory, Pasadena, California, November 15, 1984, pp. 136-141.

8. Wang, C.C., Truong, T.K., Shao, H. M., Deutsch, L.J., Omura, J. K., and Reed,
I. S., “VLSI Architectures for Computing Multiplications and Inverses in GF(2™),”
TDA Progress Report 42-75, Jet Propulsion Laboratory, Pasadena, California,
November 15, 1983, pp. 52-64.

9. Qusterhout, J., Editing VLSI Circuits with Caesar, Computer Science Division,
University of California, Berkeley, California, 1983.

10. Arnold, M. H., Specifying Design Rules for Lyra, Computer Science Division, Uni-
versity of California, Berkeley, California, 1983.

11. Baker, C. and Terman, C., “Tools for Verifying Integrated Circuit Designs,” Lambda,
Fourth Quarter, 1980.

12. Terman, C.J., “RSIM — A Logic-Level Timing Simulator,” Proceedings of the
IEEE International Conference on Computer Design: VLSI in Computers, IEEE
Computer Society Press, Silver Spring, Maryland, 1983,

57

58

13, Negal, L. W. and Pederson, D.O., “SPICE — Simulation Program with Integrated
Circuit Emphasis,” Memorandum No, ERL-M382, Electronics Research Laboratory,
University of California, Berkeley, California, April, 1973,

14. Hamachi, G., Designing Finite State Machines with PEG, Computer Science Divi-
sion, University of California, Berkeley, California, 1983,

15. Losleben, P., “Computer Aided Design for VLSI,” in Barbe, D. F. (editor), Very
Large Scale Integration: VLSI, Springer-Verlag, New York, 1980, p. 108.

START HERE 1 7
{
| Locic | |
CONCEPT, |
PROBLEM [*ctiREMENTS [[SPECIFICATION I I(-:e\:iliil;r) |
I :
l_ —-' -] l LOGIC |
| : LEVEL }
I PLA GEN, 1 (esim)
|| tee i | I
| | TRans L2y | RE |
[l(’AD GEN, | (prosim) i) i
d N .
| pads) .| LAYOUT cif | EXTRACTION [.sim]
I (caesar) (mextra) I |
| I 'ul ol LEVEL]
STANDARD ™ I
l CELL : I (crystal) I
’ LIBRARIES | | |
DESIGN RULE ELECTRICAL CIRCUIT l
|) CHECK RULE CHECKER TS gy [——{ LEVEL]
| ROM GEN, | (lyra) (erc) (sim2spice (spice)
(rom) I | |
| | L __ |
| SIMULATORS
l CELL PLACER | |
| | fquily [
I : r
| (Tt'iTﬂLf)GEN- ! L— FABRICATION TESTING »| IMPLEMENTATION
END HERE
LAYOUT TOOLS
LEGEND:
FUNCTION | file format
(tool name)

Fig. 1. Integrated UNIX-based VLSI CAD system

59

&0

o o

Fig. 2. The caesar graphics display

Fig. 3. Design errors located by lyra are displayed interactively with casiad
The black reclanghes Indicate the magnitude of the violations,

Fig. 4. A caesar display of the outpul of the crysial timing analyzer

|

Fig. 5. A 4-bit binary counder with reset implemented as a PLA. The
design, accomplished by defining the PLA with Boolean equations,
was completed in & minutes using eqniodt and tpla,

61

ik

Fig. &. Two examples of CMOS siandard calls

Fig. 7. The testing station for the integrated UMNIX-based CAD sysiom

