TDA Progress Report 42-86

April—June 1986

A VLSI Architecture for Performing Finite Field
Arithmetic With Reduced Table Look-Up

|.S. Hsu and T. K, Truong

Communications Systems Research Section

1. S. Reed

Electrical Engineering Department
University of Southern California

A new table look-up method for finding the log and antilog of finite field elements
has been developed by N. Glover. In his method, the log and antilog of a field element is
found by the use of several smaller tables. The method is based on a use of the Chinese
Remainder Theorem. The technique often results in a significant reduction in the memory
requirements of the problem, A VLSI architecture is developed for a special case of this
new algorithm to perform finite field arithmetic including multiplication, division, and
the finding of an inverse element in the finite field.

l. Introduction

A codeword of a cyclic code is a sequence of symbols or
characters (Ref. 1), These characters can be represented as the
coefficients of a polynomial

m-1
Clx) = Z ¢ x'
=0

where ¢, for 0 <i<m - | is an element in a finite field GF(q),
and m is the length of the codeword. One such cyclic code is
a Reed-Solomon (RS) code with symbols which lie in the
Galois field GF(2") of order 2". If § belongs to GF(2"), then

where ¢, € GF(2) and « is a root of a primitive irreducible
polynomial with degree » over GF(2). It is shown in Refs. 2-4
that the arithmetic used to encode and decode RS codes over
GF(2") requires the multiplication and division of field
elements in GF(2"). The most straightforward method to
perform multiplication and division of two field elements in
GF(2") is to use table look-up. The same method can also be
used to find inverses in the finite field.

To illustrate this procedure, let two field elements be repre-
sented in binary. That is, let x = Xy Xy ooy Xy aNdY =Yg,
Vi o1 Y, q» Where x, y, € GF(2) for 0 <i<<n- 1. Next let a
“log” table be used to find the exponents i and j in such a
manner that x = o and ¥ = &. Binary addressing is used in the
table to locate the logarithms i and j of x and y, respectively.
After the addition & =/ +j mod (2" ~ 1) of these exponents,
an antilog table is used to find the binary representation of
o. The exponent k serves as the address of the field element

143

in the antilog table. For some applications ¢ = 2" is large and
the log and antilog tables may be so large that the consump-
tion of silicon area in the VLSI implementation becomes
prohibitive.

Recently, Glover (Ref. 5) developed a new algorithm to
reduce the size of the table needed to find the log and antilog
of field elements by using several smaller tables. The method
is based primarily on a use of smaller look-up tables and the
Chinese Remainder Theorem (Ref. 6). To make this new
algorithm realizable, a new mapping method based on a special
case of the technique in Ref. S is found in this article for
converting an element in GF(22") to its counterpart in
(GF(2™)?) and vice versa, where n is a positive integer. A
VLSI architecture is also developed to realize this new
algorithm. This VLSI architecture possesses the programmable
capability of being able to perform operations such as multipli-
cation, division or the finding of inverses in a finite field.

ll. A Reduced Table Look-Up Method for
Finding Logs and Antilogs of Elements
in a Galois Field

In this section, one of the methods developed by Glover
(Ref. 5) to find the log and antilog of finite field elements is
described briefly. The details of this method are described in
the appendix.

The Log Algorithm. Given o™ = ¢ + ab, where « is a primi-
tive element in GF(22"), @, b belong to GF(2"), and 0 <m <
22" _ 1 is the log of element ™. The procedure to find
m = log, (&™) is described as follows:

Map & to a + ab. The particular mapping tech-
nique is described in detail in the following section,

Step 1.

Compute x = @®> + ab + b*8 and y = a/b, where
g=a?™ isa primitive element in GF(2").

Step 2:

Step 3. Use the logﬂ table to find m, = logy(x) and the
log?, table to fmcli m, =log,(y) fora#0, b # 0,
where y = 2" 1s an element in GF(2"). For
a = 0, choose m, = 1. For & = 0, choose m, = 0.
Here log,(x) = m mod (2" -1)=m,,and log7@) =
mmod (2" + 1) =m,

By the Chinese Remainder Theorem (Ref. 6),
m=m *n, 'M1 tm, *n 'Mz.Heren=n1 J
n, =n * N =n, N, n relatively prime and
M; uniquely satisfies (modulo n,) the congruence

N;*M;=1modnfor 1 <i<2.

Step 4:

144

The Antilog Algorithm. Given m, recover & =g + ab as

follows:
Step 1: Compute m; =m mod (2" - 1) and m, = m mod

1
@"+1).

Step 2 Use the antilog tables to find antilog,(m,) =
x =4q%+ab+ b28, and antilog, (m,) =y = a/b for
m, #0, 1. Form, =1,a=0, and b =+x/8 =
an‘ulog‘3 ((logg(x/B))/2). For my =0, b = 0, and
a=+fx= antilog, ((logﬁ(x))/Z).

Step 31 For m, # 0, 1, use the equation b = antilogﬁ
((logﬂ(z))/2) where z = x/(y2 +y + B). Thena =
b-y.

Step 4: Map a + ob to &, This inverse mapping is

described in detail in the following section.

To illustrate the above procedures, two examples are given
for the finite field GF(2%).

Example 1: Givena + ab e GF(2%), where a = (0110)and
b=(1110)eGF(2%). Then, find m such that o =g + ab.
By the log algorithm, x =42 +ab + b2 = (1110)andy=a/b
= (111 1). Now use Tables A-1 and A-3 to find m, and m,,
respectively. The results are m; = 7 and m, = 8. For this
example, n = 15 and n, = 17. Thus, Ml = 8 and M2 = 8 are
the smallest numbers such that 17M, =1 mod 15 and 15M, =
1 mod 17, respectively. Hence, n,M, = 136 and n, M, = 120.
By Eq. (10), Ref. 8,m = (136 * m +120 * m,) mod (28 - 1) =
127.

Example 2: Given m = 127, find o!?7 = 4 + ab € GF(29).
Using the ANTILOG algorithm, m, =m mod (2" - 1) = 7
and m, =m mod (2" + 1) = 8. Then use Tables A-2 and A-4
to fmd x and y, respectively. The results arex = (1 1 1 0) and
»=(1111). Thus, z=x/(»> +y +8)=(001 1). By Eq. (9),

Ref. 8,5 = ant1log ((log @)/ = antllog M=00110).
Thus, a = b * y = (O 1 1 0). Therefore, a127 =(0110
+a(l110).

lil. A Method for Mapping Elements of
GF(22n) Onto GF((2")2) and Vice Versa

To perform Step 4 of the Antilog Algorithm in Section II,
a method is developed in this section for the required mapping.
This is accomplished by first considering the mapping of an
element o in GF(2*") to its counterpart @ + ab, where
a, b € GF(2"). This mapping procedure is best described by an
example. The extension to other finite fields GF(22") can be
obtained in a similar fashion.

First, Theorem 1 in Ref. S is repeated here. A proof of this
theorem is given here also in order to make the algorithm more
understandable and self-contained.

Theorem 1 (Ref. 5): Let § be a primitive element in GF(2™)
such that the polynomial p(x) = x? + x + § is irreducible in
this field. Also let & € GF(2*") for as= 0 where GF(2%")
is the quadratic extension field of GF(2"). If « is a root of
p(x), e, p(0) = 0, and 2" + 1 a prime, then « is a primitive
element in GF(2%™).

Proof: It is shown in Ref. 7 (page 34) that if & is a root of
p(x), its conjugate & = " is also a root of p (x). Thus,

(x+a) (x+®) = x*+(@+BDx+to

2 +x+p

where o +@ =1 and @ * @ = 5. Hence,

az fL B (1)

Now 22" _ 1 =(2" + 1) + (2" - 1) and 2" + 1 is a prime by
hypothesis. Let v be any number such that y|(2%" - 1) and
v# 2" + 1. Then (2" - 1) so that by Eq. (1)

o@D = @2y @ 1)y 2 g -1 @)
Since f is pr1m1t1ve over GF (2") 2" - 1 is the least integer
such that 8@"-1) = 1. Hence B@"-1)/7 # 1 unless y = 1.
On the other hand, if v = 2" + 1, then

QG2 -0p 2 QD@ 1y) o 2

Since a is a root of p(x) =x? + x + 8, by Eq. (1), one has
p(@) = e*+a+p
= a?+ata t
=0

Thus, @2"-1 = o1 + 1 # 1 for otherwise o™ = 0, which is
impossible since & # 0.

2

Thus, by Eq.(2) and the above, if 7|22 - 1, then a® =D/

1 unless y = 1. Therefore, the order of & is 22"~ 1 and a is
primitive in GF(2%").

QE.D.

To illustrate the consequences of the above theorem, let
n =4 and let « be the root of polynomial

p(x) = x2+x+3

where $ is a primitive element in GF(2*). For this case by
Eq. (1)

4
B=a2 " = ol7 (3)

By the above theorem, since 17 is a prime, « is a primitive
element in the extension field GF(2%).

Since is the root of p(x), p(@) = o + &+ a'” = 0. Hence,
« satisfies the reduced equation
ol = at1 4)

Now the root of the irreducible primitive polynomial
f(x) over GF(2) which generates the finite field GF(2%)
must also satisfy Eq. (3). Of the many irreducible polynomials
which generate GF(2%), consider the special irreducible
polynomial

FO) = x®+x8 +x5+x%+1)
Let a be any root of f(x) so that « satisfies
o+l +af+0P+1 =0
or alternatively

B =af+aS+aP+1 (6)

o
It is now shown that o also satisfies Eq. (4). Squaring both
sides of Eq. (6) one obtains,

16

o'® = 012 +al0 4 gb +1

1}

@+t +a+)+ @ +al+ad+al+1)+ab+1]

1

a+tl

Hence the irreducible polynomial f(x) in Eq. (5) is so

“chosen that a root & of flx) also is a root of the quadratlc

generator polynomial p(x) = x> + x + § of finite field GF(2®)
over the smaller field GF(2*), where 8 = a!”.

In order to simplify operations by table look-up, one

would like to represent an element &/ in GF(2%) by o™ =
a + ab, where a,b ¢ GF(2%), the smaller field. To find the

145

mapping which makes this representation possible, one must
find the generator polynomialg(x) of GF(2*) which 8 satisfies.
By Eq. (3), 8 = &!7, where 8 is a primitive element in GF(2*).
Hence g(x), the generator polynomial of field GF(2*) over
GF(2), must satisfy the equation

g =gy =0
Try the irreducible polynomial
glx) = x* +x¥+1
over GF(2). Substituting x = a7 into the above g(x) yields
g(@”) = (@) + (@) +1 ™
However, by Eq. (4),
't = g+
which implies
ot7 = P ta
Substituting the above equation into Eq. (7) yields

g@'™) = @ +a)t +(@® +a)® +1

(@ +a*)+ (@ ta* +of +a®)+1

=0

Hence g(x) = x* + x + 1 is the correct generator polynomial
of the finite field GF(2*).

Given an element o™ in GF(2%), o™ can be expressed in
standard basis form as

m . 0 1 2 3 4
o = Coa +Cla +C2a +C3a +C4a
5 6 7
+Ca” + Ca” + Ca ®)

where C, € GF(2) for 0 <i<7.a™ also can be represented as
o™ =g+ ab, where a,b e GF(2%).

Now 8 = #'7 is the primitive element found above for
GF(2%). Hence a,b in GF(2*) can be represented over GF(2)
in standard basis form as

- 0 1 2 3
a = aOB +alﬁ +a26 +a3ﬁ (93)

146

and
= 0 1 2 3
b= bp +b B +b,8 +b,p (9b)
where 2, b, € GF(2), for 0 <i< 3.

Now substitute representations (8) and (9) into equation
o™ = g + b to obtain

Coao +C ol + et + G’ + Cat + Csoc5 + Gl + C o’
= a,f° +a,B! +a,6° +a,6° + (B,p° + b, +b,6°
3 *
+ b3ﬁ) a

Since 8 = a7, the right side of the above equality can be
represented in terms of powers of a as

._ao

+(110il7 +a20434 +tl30l5] + b0a+ blo‘lB + b2a35
+ byt

= ay+(a, +hy)a+t (e ta,+b)e? +(a,+b +b)a
t(a, +a, +b)a* +(a, + b, +b,) 0’
+ (g +b3)a6 b, o’

If the coefficients of the corresponding powers of « are
equated and expressed in matrix form, one obtains

C=M-A (10)

where

1
L 0 0 a9 o
{

O

L&

and

o o o o o o o
o o o o o
o o o

The inverse matrix M™

given by

o O O o o ©

L0

o O O ©
o O

o O O
[= N

o Qo
o O O
o O oo o o o

o O O o

“B" S

S
w

o o O

of M is obtained readily and is

—_

[T = TN

(11)

Hence, one obtains

a, 10000000 [c]
2, 00111111 o}
a, 00001010 C,
a, 00000011 C,
bl T |o1111111|" ¢
b, 00010101 C,
b, 00000110 C,
| by (00000001 |G|

or A = M"IC. Equation (11) is the mapping of elements in
GF(28) to the corresponding elements in GF((2*)?). It is
the inverse mapping of the mapping from GF((2%)?) to
GF(28), given in Eq. (10). Equation (11) illustrates for n = 4,
the mapping needed in Step 4 of the Antilog Algorithm in
Section II.

IV. VLSI Architecture for Performing Multi-
plication, Division and Finding the
Inverse of Finite Field Elements

In this section, a VLSI architecture is developed to perform
multiplication, division and the finding of an inverse element
in the finite field GF(2%) using the new algorithm described
in the last two sections. This chip is designed to be program-
mable so that multiplication, division or the finding of an
inverse in GF(28) can be performed.

Figure 1 depicts the overall diagram of this chip. In Fig. 1,
IN, and IN, are the two inputs to this chip. They are field
elements in GF(2%). If the operation is to find the inverse
element, IV, equals zero and /I, is the element to be inverted.
Here it is assumed that these field elements are represented in
the standard basis. That is,

(i=1,2)

Input C, is the control signal used to control which opera-
tion is to be performed. If €| equals one, multiplication is
performed. If C| equals zero, then either division or the

147

inverse operation is performed, according to whether IV, is
zero or not. If IN, equals zero, then the inverse operation is
performed, otherwise the division operation is carried out.

OUTPUT is the data output pin for the calculated result.
Figure 2 shows the block diagram of this chip. As shown in
the figure, the input field elements o/ and «” are first con-
verted to their corresponding elements a + ab and &' + &b’ in
GF((2*)%). The needed mapping matrix is found in Eq. (11)
of Section I1I.

Next, the values of x, , x' and y' shown in Fig. 2 are cal-
culated by the following equations:

x =a’+ab+h?
y=a+b?!
x'=a?+a'b +b?
' = abr!

The arithmetic operations such as the square and the
inverse, needed above, are performed also by the table look-up
method since they can be performed first in the much smaller
field of GF(2%). The look-up table for GF(2%) involves only
a small area in silicon and as a consequence is easier to realize
in VLSI.

After the values of x, y, x', ¥’ are obtained, their corre-
sponding log values m,, m,, m,, m, are obtained through the
table look-up method as well. Again, this is readily realizable
since these values are in the smaller field GF(2*). The log
values of o/ and &” can be obtained by equations

m=m -nZ'M1+m2°

1 n - M,

S
i

! ? 1 ! !
m e n M’1 +tm, o n oM,

respectively.

In Fig. 2, either m + n or m - n is performed in accordance
with the control signal C,. If C| equals one, addition is per-
formed as needed in the multiplication operation. Otherwise a
subtraction is performed as needed for division or the inverse
operations. If the operation is to find the inverse element, then
one of the inputs is zero, and its corresponding log value is
also zero. Therefore, the operation m - n corresponds to a
negation of the logarithm of the nonzero input, ie., -n is
obtained. This is the logarithm value of the inverse element.

148

The number p, in Fig. 2, results from either (# + n) mod
255 or (m - n) mod 255. These results are obtained through
the modulo 255 circuit. The result of this computation is then
fed to two modulus circuits to obtain the results modulus

, and m,. m, and m, are the values of p modulo 2% - 1 and
24l +1, respectlvely Two antilog tables are then used to find
the values x and y as described in Section II, Step 2 of the
Log Algorithm. Next, z = x/(y? + y +) is calculated and a
log, table is used to find the logarithm of z. This value is
then divided by two to obtain the value “A” as shown in
Fig. 2. At this stage, element y is delayed for a certain number
of clock cycles for the purpose of synchronization. An antilog
table is then used to obtain element &. If b is combined with
y, obtained previously, then element @ can be obtained by
performing the following operation:

a = by

Finally, the inverse mapping circuit described in the previous
section is used to obtain the corresponding element of a + &b,
ie., of, in GF(2%).

Because all operations performed in this chip are in the
smaller finite field GF(2%), operations in GF(2*) are per-
formed by the table look-up method occupying nearly half
the silicon area as one would expect for GF(2%). It is obvious
that the tables in GF(2%) can be reduced to smaller tables in
GF(2%) by the same technique. The increased overhead
associated with this reduction appears to be larger than the
benefits that this further reduction might obtain for this
case.

V. Conclusion

A VLSI architecture for performing finite field arithmetic
is described in this article. A chip is designed to be program-
mable so that multiplication, division or the finding of an
inverse in GF(28) can be performed. The algorithm used is
due to Glover (Ref. 5), where a new table look-up method
for finding the log and antilog of finite field elements is
developed. In that method, the log and antilog of a finite
field element are found by the use of several smaller tables.
The method is based on a use of the Chinese Remainder
Theorem. The technique often results in a significant reduc-
tion in the memory requirements of the problem.

A method for mapping elements of GF(2?") onto
GF((2™)?) and vice versa is also developed in this article. An
example of mapping elements of GF(2%) onto GF((2%)?)
is given for the purpose of illustration. The extension to other
finite fields GF(2%") can be obtained in a similar fashion.

References

. MacWilliams, F.J., and Sloane, N.J. A., The Theory of Error-Correcting Codes,

North-Holland Publishing Company, NY, 1981.

. Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, NY, 1958.
. Reed, L. 8., Truong, T.K., and Miller, R. L., “Simplified Algorithm for Correcting

Both Errors and Erasures of Reed-Solomon Codes,” Proc. IEE, Vol. 126, No. 10,
Oct. 1979.

. Winograd, 8., “On Computing the Discrete Fourier Transform,” Proc. Natl Acad.

Scie.. USA, Vol. 73, pp. 1005-1006, 1976.

. Glover, N., Practical Error Correction Design for Engineers, Data Systems Tech-

nology Corp., Broomfield, CO, 1982,

. Ore, O., Number Theory and Its History, McGraw-Hill, NY, 1948.
. Lin, 8., and Costello, D. 1., Ir., Error Control Coding, Prentice-Hall, NJ, p. 34, 1983,
. Glover, N., Reed, I.S., Truong, T.K., and Huang, J. T., “Methods to Reduce the

Table Look-Up Requirements for Finding Logs or Antilogs of Elements in a Power
Galois Field,” submitted to IEEE Trans. on Computers.

149

(I

|N2—>

1

Vdd

!

GND

Fig. 1. Overall diagram of the VLSI chip for performing muiti-

plication/division or finding inverse in a finite field

a, b, € - GF (2

OUTPUT

m
X 1
LOGg () ~
0" —a! a+ab a,b x = o +ab + b%g B m=my ny M)
y:(]-b-] y m2 +m2n] M2
— LOG (y) >
4
m 1
X LOGg (x") 1
X
A alb|xt=aZeatb+ b7 B n=my'ny My
a a' +ab' A . iy PRI
)'I =qleb)" 2 o' M,
LOG,, (')
G
m P m
1 - x
oD hss P moD 2 -1) L0G™) (my)
N i B < .
=g LOG ,Z |
mo y)'2 +y+8B Gﬁ
P MOD (24 +1) 1067 (my)
DELAY [
y
A —s LOGY A ambey oPmatab oP

Fig. 2. Block diagram of the VLSI chip for performing multiplication/division or inverse of
finite field elements

150

Appendix
Algorithm for Finding Log and Antilog of Finite Field Elements

In this appendix, the algorithm used to find the log and
antilog of finite field elements is described in detail. A special
case of Theorem A-1 and A-2, given next, was originally found
by Glover (see Ref. 5).

Definition A-1: For « ¢ GF(2%") and a + ab € GF(2™"),
where g, b € GF(2"), define the norm of @ + ab to be

lla+abll = (@+ab)+ (a+ab)

where the bar denotes element conjugation in GF(2%").

Theorem A-1: Let 8 be a primitive element in GF(2") such
that the quadratic polynomial x? 4 x + 8 is irreducible over
GF(2"). Suppose also that 2” + 1 is a prime integer. Next
let o be the root of this polynomial in the extension field
GF(2*") = {a + abla, b € GF(2")} of GF(2") Suppose
o™ =g + ab e GF(2*"). Then m, = log, (@® +ab + bzﬁ)
m mod (2" - 1), ie., m, is least 1nteger such that g™
1™1] = lle + abll = a® +ab + b2.

Proof: Since x? + x + B is irreducible over GF(2™), it has
roots & and

@ = a? (A1)
in the extension field GF(22"). By Theorem 1, « is primitive
in GF(2?"). By definition A-1 and Theorem 1, one has the

following:

(@+ab) s (@+ab)=(a+ab): (a+0b)

It

lla + obl|

a® +ab + b2 (A-2)

If ¢ + od is any other element in GF(2*") and ¢, d €
GF(2™), then

(a+ ab)zn s (c+ ad)zn

(a+ab)* (c+od)

(a+ab) (¢t od)

Thus, by the definition of the norm, one has

li(@+ ab) (c+ad)ll = (a+ab)(c+ad)(a+ab)(ctoad)

lla +abl| * lic + od|| (A-3)

Observe next by Eq. (A-1) that |la|| =« * @ = § so that the
theorem is true form = 1.

For purpose of induction assume that
¥y = g* (A-4)

for all &k such that 1 <% < m. Then, by (A-3),fork=m+1,
oL = ||o™|| * ||ayn = f™*. Hence the induction is com-
plete and (A-4) is true for all k.

Now represent o™ by a + ab for some a, b € GF(2"). Then,
by (A-2) and (A-4), |l&”|l = ™. Since § has order 2" - 1,
the theorem must be true. Q.E.D.

By Theorem A-l one can construct a log, table of 2"
elements by storing the value m, = m mocf3 2" -1), where
0sm < 2" - 1, at location a21 + ab + b2B such that o™ =
a+ab. Then, with a,b known, one can find m, using the log
table. Similarly, the antilog table is constructed by storing
the bmary representation ofa®* +ab + b28 at location m, such
that ™ = ¢ + ab and antilog, (m,) = a* +ab+b*f=1x.

Next, the construction of tables of 27 + 1 elements is
shown.

- 1 € GF(2%"), where « is a
=g +ab e GF(2*")

Theorem . A-2: Let y = "
primitive element of GF(2*"). Suppose "
for some @,b € GF(2"). Then,

m

i.e., m, is least integer such that ¥ =" o,

Proof Since a is a primitive element in GF(22") and v =
2™ , the order of v is 27 + 1. By the definition of the norm,
one has

2}1

lajl = a-a=a+o® =vy-a? (A-6)

For purposes of induction assume that
oIl = o o?* (A7)
for 1 < k < m. Then, by (A-3), lla™* || = |[¢™]| « |lall =

(Y" + 2™y (ya?) = 4™« 2D Hence the induction
is complete and (A-7) is true for all %.

151

Representing & by a + ab for some a,b ¢ GF(2"), it
follows from (A-6) that
lla+abll = ¥+ (a +ab)? (A-8)

Multiplying both sides of (A-8) by (a + &b)? yields |la + ab || *
@+) = v" (a +ab)? (a+@)* =y™ lla+abll?.

Therefore, from the definition of the norm,

m _ (@t@)Y _a+3b
lla+abll atab

(A-9)

Since the order of ¢ is 27 + 1, the theorem must foﬂow.Q.E.D.

Using the results of Theorem A-2, let

flafp) = ™ =((a/b) +®)/((a/b) + @)

(a +ab)/(a + ob) (A-10)
To construct the log_ table, notice that when a =0, f(a/b)
=™ = a2"-1 = y and m = 1. For m, =m mod (2" + 1), one
hasm, = 1 whena = 0.When b = 0,f(a/b)=(@+0)/(@a+0)=1.
Thus, m = 0 and m, = 0. The remaining part of the log7 table
can then be constructed by storing the values m, = m mod
(2" - 1) at locations “a/b” for o/ =a + ab, where 2 <m,
< 2", The antilog_ table is constructednby storing the binary
representation of a/b € B, 82, ..., 3% *}at the correspond-
ing locations, { = m, , for 2 <i< 2". Thus,
Antilogv(mz) = qfb=y (A-11)
From (A-10) and (A-11) the two simultaneous equations
needed to solve for # and b in the expression o =g + ab are
given as follows:

Let

a® +ab+b%B = x (A-12a)

152

and
’% =y (A-12b)

Relations (A-12) yield the following solution:
b = 2—x._._...
yoty+g

a=b-y

and

For b e GF(2") it is verified readily that

logﬁz
b= antilog‘6
2

where z = x/(¥% +y +).

It is desired now to find the logarithm with base & of &™ =
a + ab e GF(2*™), where a,b ¢ GF(2"),and a € GF(2*") is
primitive. This can be found from the powers m, and m,,
by using the tables of the 2" - 1 powers of 8 and the
27 + 1 powers of v, respectively, as follows:

Let
22" -1 = (2"+1)-2"-1)=n *n,=n *N =n ‘N,
where N1 =n, and N, =n,. Then, by the Chinese Remainder

Theorem, m = log (a™) is given by

= p . p . 2n
m=m *n, M tm, n M, mod (27" - 1)

where M, and M, are the smallest integers such that n, M, =
1 modn, andn, M, =1 modn,, respectively.

Table A-1. Logﬁ table for finding m; = m mod 2" — 1 from
known /" = a + ab where 2" — 1 = 15

Table A-2. Log, table for finding x = a +ab + bzﬁ from

known my = m mod(2” - 1) where 2" — 1 = 15

x=a2+ab+ b2

Location

Content

my Elogﬂx mod 15

B3 By By By

0 0 0 1 3
0 0 1 0 2
0o 0 1 1 14
0 1 0 0 1
0 1 0 1 10
0 1 1 0 13
0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1 11
1 1 0 0 12
1 1 0 1 5
1 1 1 0 7
1 1 1 1 6

Location Content
x= antilogﬁ (my)
my
by By By Bg
0 0 0 0 o©
1 0 1 0 o©
2 0 0 1 o0
3 0 0 0 1
4 1 0 0 1
5 1 1 0 1
6 11 1 1
7 1 1 1 0
8 6o 1 1 1
9 1 0 1 0
10 0o 1 0 1
11 i 0 1 1
12 1 1 0 O
13 0 1 1 o0
14 o 0 1 1
15 1 0 0 O

153

Table A-3. Log,, table for finding m, = m mod @" -1) Table A-4. Antllogy table for finding y = a/b from known

where 2" + 1 = 17 from known o/” = a + ab my = m mod (2" + 1) where 2" + 1 = 17
Location Content Location Content
y=alb - y = antilog,, (m,)
m2=10g,),)mod 17 My
B3 By B1 Bo B3 B, By Bg
0 0 0 1 14 2 0o 1 0 O
0o 0 1 0 12 3 1 0 0 1
0 0 1 1 6 4 0 1 1 0
0 1 0 O 2 5 i 0 1 0
0 1 0 1 10 6 0 0 1 1
0 1 1 0 4 7 1 1 0 1
0 1 1 1 8 1 1 1 1
1 0 0 O 16 9 o 1 1 1
1 0 0 1 3 10 o0 1 0 1
1 0 1 0 S 11 1 0 1 1
10 1 1 11 12 0 0 1 0
1 1 0 0 15 13 1 1 1 0
1 1 0 1 7 14 o 0 0 1
1 1 1 0 13 15 1 1 0 O
1 1 1 1 8 16 i 0 0 O

154

