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A technique is demonstrated for obtaining the spectral parameters of the received carrier
phase in the presence of carrier amplitude scintillation, by means of a digital phase locked
loop. Since the random amplitude fluctuations generate time-varying loop characteristics,
straightforward processing of the phase detector output does not provide accurate results.
The method developed here performs a time-varying inverse filtering operation on the
corrupted observables, thus recovering the original phase process and enabling accurate

estimation of its underlying parameters.

l. Introduction

The purpose of this article is to present a method for esti-
mating the power spectral density of the phase of a received
carrier, when there is significant amplitude scintillation on the
received waveform. For example, these conditions occur when
the spacecraft transmits through the solar corona. Knowledge
of the phase spectrum is important for improving carrier track-
ing through bandwidth optimization. or through more sophis-
ticated real-time adaptive techniques.

In a previous article [1] we reported the results of an
experiment, carried out at DSS 14 at Goldstone, where the
DSN Advanced Receiver was used to track weak signals origi-
nating from the Pioneer 10 spacecraft on its way out of the
solar system [2]. One purpose of the experiment was to opti-
mize the bandwidth of the Advanced Receiver’s coherent
phase-locked loop in near-real time, thus minimizing the root
mean square (rms) phase error and improving the quality of
the recovered data. The optimization was based on estimates
of the phase spectral density and the spectral level of the addi-

tive noise, using a robust ad hoc estimator. Amplitude fluctua-
tion was not a factor in that experiment. More recently, an
attempt was made to track Voyager 2, as it travelled behind
the solar corona in the latter part of December 1987 [3]. A
maximum likelihood estimator was developed to obtain
improved estimates. However, the unexpectedly large ampli-
tude fluctuations encountered near the Sun rendered these
parameter estimates questionable, even though phase lock was
maintained with the help of the ad hoc estimator. A large
amount of data was collected and subsequently analyzed. In
this article, we present the results of the data analysis and
demonstrate a technique for obtaining estimates of the rele-
vant spectral parameters, taking into account the effects of the
time-varying amplitude. Our ultimate goal is to adaptively
control loop parameters for the purpose of minimizing phase
error, even in the presence of severe amplitude fluctuations.

Radio waves propagating through a turbulent medium, such
as the solar corona, undergo random changes that often alter
their characteristics. From the viewpoint of deep space com-



munications, the most significant of these effects are phase
and amplitude scintillation, spectral and angular broadening,
and Faraday rotation [4]. Amplitude and phase scintillation
are the most pronounced effects at the 8.4-GHz carrier fre-
quency (X-band) employed by the DSN. Scintillations are
caused by random inhomogeneities within the propagation
channel. Amplitude scintillation is basically a diffraction
phenomenon, caused by plasma irregularities that are smaller
than or roughly equal to the Fresnel zone size at the irregular-
ity. The time scale of the amplitude fluctuations due to the
solar corona is typically on the order of a second. Phase scintil-
lation is primarily a refraction effect, caused by plasma irregu-
larities with different refractive indexes, and different random
velocity components along the line of sight. The power spec-
tral densities of both phase and amplitude fluctuations obey
inverse power relations in certain frequency regions near the
carrier frequency, which means that the level of the spectral
density is inversely proportional to the frequency difference,
raised to some constant power

S =811 (1)

For phase spectra, the exponent a due to the solar corona is
typically 8/3 or less at small Sun-Earth-probe (SEP) angles
[5]. The coefficient S, is the value of the spectral level at a
frequency of 1 Hz from the carrier. Oscillator instabilities
aboard the spacecraft also generate a power law type spectral
density, but with an exponent of o = 3 [6]. In the current
application, we shall assume that plasma effects dominate, and
model the spectral density of the phase fluctuations as in
Eq. (1) in order to obtain the required parameter estimates.
However, care must be exercised in interpreting the results,
since other effects (such as oscillator instability) may not be
completely negligible. The spectral characteristics of the
amplitude fluctuations are less critical, since only the band-
width of the amplitude fluctuations will be used to estimate
the scintillating amplitude.

Il. The Received Waveform

As the transmitted signal propagates through the solar
plasma, it suffers random amplitude and phase distortions
that degrade the quality of the received waveform. An accu-
rate description of these degradations is the subject of the
following paragraphs.

A. Signal and Noise Representations

Having propagated through the turbulent channel, the
residual component of the transmitted radio wave s(Z) can
be represented at the receiver as

s(t) = V2 A(¢) cos (wyrt a(t)y) 2)

where ), is the carrier frequency in radians per second,
A(r) is a random amplitude function describing the channel-
induced amplitude scintillation, and 6(¢) is a random phase
process, also due to the channel. Unfortunately. a perfect
measurement of this received waveform cannot be made,
because of background radiation and receiver noise. Within the
frequency band of interest, the sum of all significant noise
contributions can be modeled as an equivalent narrowband
Gaussian process, with representation

n(t) = V2 [n_(2) cos (w, 1) = n(t) sin (w, 2)] 3)

Here n_(r) and n(r) are taken to be independent white Gauss-
ian processes, each with two-sided spectral level N,/2, within
the frequency band of interest. Thus, the receiver observes the
channel-corrupted signal in the presence of additive white
Gaussian noise:

r(t) = s() +n(1) (4)

Amplitude and phase information may be extracted from
the received waveform by means of coherent processing
techniques, such as by means of a phase-locked loop in a
coherent receiver. A coherent receiver estimates the total
phase (wy? + 6(¢)), and multiplies the received waveform r(t)
by locally generated sinusoids driven by the estimated phase
process §(r). If the estimate is a good approximation to the
received phase, then the resulting baseband waveforms can be
represented as

r(t) = A(t) cos ((2)) + n,(1) (52)

ro(8) = A1) sin (#(1)) + 1y (1) (5b)

where ¢(¢) = 0(¢) - ’O\(t) is the instantaneous phase error, and
ny(t) and o (¢) are approximately white Gaussian processes
with two-sided spectral level N,/2, independent of each other
and of the underlying phase error (this last assumption is valid
only if the correlation time of the additive noise is short com-
pared to that of the phase process). The J (or in-phase) signal
can be used for amplitude estimation, whereas the Q (or
quadrature) signal is generally used for phase control. Note
that if the phase estimate is accurate so that [¢(¢)| <<1, then
Egs. (52) and (5b) reduce to

r(t) =A(@)+ n,(1) (6a)
ro (1) = A() () + ny (1) (6b)

In particular, the scintillating amplitude 4 () can be estimated
under this condition, since the in-phase signal r,(#) reduces



to the sum of the amplitude function and the equivalent
noise, independent of the phase process.

In digital systems, the analog waveforms are converted to
numerical sequences prior to processing. The conversion opera-
tion is called sampling. It is generally implemented by averag-
ing the analog waveform over intervals that are short compared
to the correlation time of the desired component, or by per-
forming other roughly equivalent operations. For purposes of
analysis it is convenient to adopt the averaging approach, and
model the received samples as

LT
r (i) = ?—[ r.(r)yde = s (i)+n (i) 7

where x represents either / or 0, 5,(/) = A(i). and So (i)=
A (D) ¢(7). If the noise correlation time is short compared to
the averaging time 7, then the variance of either noise sample
becomes N, /2T, while its mean value remains zero. It is often
necessary (or desirable) to resample the original sequence at
various points within the system by averaging consecutive
samples. Because integration is a linear operation, this type of
resampling is exactly equivalent to averaging the analog wave-
form over the longer (resampled) time interval. Thus, if L
consecutive samples are averaged, the variance of either
resulting noise sample becomes N, /2LT. The desired signal
component remains essentially undistorted by resampling,
provided its correlation time exceeds LT by a significant
margin.

B. Amplitude Scintillation Spectrum

An example of a scintillating radio wave observed in the
presence of additive noise was provided by the Voyager 2
spacecraft as it passed behind the solar corona. As an example,
we use the data from day-of-year (DOY) 357, corresponding
to an SEP angle of about 2.3 degrees, because strong ampli-
tude scintillations were evident. The Advanced Receiver
tracked the phase with small error, validating our linear model.

The received analog waveform was initially sampled at
approximately 10 million samples/s, then summed and resam-
pled at a rate of 320 samples/s, yielding a sampling time of
T=3.125 ms. This was the update rate of the digital phase
locked loop. The observables generated by the coherent loop
were further summed and resampled at 40 samples/s, corre-
sponding to a final resampling time of LT = 0.025 second.

A sample sequence of the observables, consisting of 256
consecutive samples, is shown in Fig. 1, spanning a time of
6.4 seconds. The discrete sample values are connected with
straight line segments to aid in visual perception. Slow varia-
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tions in the average amplitude are apparent. The significant
frequency components of this sequence can be quantified by
estimating its power spectral density. This was done by means
of averaged periodograms, described in detail in Section IV.
Periodograms can be obtained efficiently using fast Fourier-
transform (FFT) algorithms. The normalized spectral density
estimate of the amplitude shown in Fig. 2 was obtained by
averaging 100 disjoint sequences of 256 samples each, and
dividing by the zero-frequency value. It is apparent that the
spectrum can be divided into two distinct regions, namely a
“high-frequency’ region due to the white noise where the
spectrum appears flat, and a “low-frequency” region where
the signal amplitude fluctuations dominate.

An estimate of the amplitude fluctuations may be obtained
in real time by passing the received sequence through a low-
pass filter with bandwidth great enough to ensure acceptably
small distortion in the scintillation spectrum. The required fil-
tering operation can be generated by averaging K consecutive
samples in a “sliding window” implementation. We take the
bandwidth of this filter to be the frequency of the first null,
namely

By = TK)™! (8)

(Note this is greater than the usual “-3 dB” bandwidth.)
Observing that there is no significant power in the amplitude
scintillations above 2 Hz, we set B, =2 Hz, for whif:\h K =
1/(2TL) = 20. The estimated amplitude function A (i) is
shown in Fig. 1, while the spectrum of the filtered estimates
is shown in Fig. 2, both represented by dashed curves. The
performance of this rather simple amplitude estimator is not
expected to be as good as that of more sophisticated algo-
rithms based on optimum estimation principles. However,
since the sliding window combines ease of implementation
with acceptable performance, it is considered adequate for
the purpose of demonstrating the concepts developed in this
article.

lll. Separation of Amplitude and Phase
Effects

In this section we describe a technique for reconstructing
the noise-corrupted phase process from the recorded phase
detector output, effectively removing the random coefficient
of the phase due to the scintillating amplitude. First we dis-
cuss the standard digital phase locked loop (PLL), then we
model the loop in the presence of random signal-amplitude
variations, and finally we demonstrate the reconstruction of
the received phase.



A. Linear Time Invariant Phase Locked Loop

The quadrature samples defined in the previous section are
used in the Advanced Receiver to drive a digital phase-locked
loop, which in turn generates estimates of the received phase
process at the loop update rate. These estimates control the
frequency of a local oscillator operating at, or near, the
received carrier frequency, whose output is used to perform
the desired downconversion operation. With little loss in
generality, we shall assume that direct baseband downconver-
sion is performed. If the loop is locked. and operating with
small instantaneous phase error most of the time, then the
linear model yields an accurate description of loop operation.

A linear model of the digital phase-locked loop is shown in
Fig. 3. The loop generates estimates of the received phase se-
quence, 9\(1'), and subtracts these estimates from the received
phase sequence 6(i). The received phase consists of three
independent components: a doppler-induced phase process
d(i), transmitter instability y,(7), and a plasma-induced phase
process t,'/p(i). Therefore we can write (i) =d (i) + Y (i) +
}'\/p(i). The instantaneous phase error, defined as ¢(i)=0(i) -
(i), is multiplied by a slowly varying sequence A(7) repre-
senting the plasma-induced amplitude scintillation of the
received carrier. After adding the equivalent noise sequence
er(i), the resulting sequence is filtered by the loop filter. The
filtered error sequence e(Z) controls the frequency of a numer-
ically controlled oscillator (NCO) whose output is also con-
sidered to be a phase sequence, sampled at the same rate as the
input. The phase estimate is the sum of the NCO phase plus an
independent random sequence representing NCO drift. The
observable sequence is denoted by w(#). It is a resampled
version of the phase detector sequence which appears at the
input to the loop filter. Henceforth we assume that w(i) =
(i), because in our case the resampling rate is much greater
than the bandwidth of the phase process.

B. PLL With Time Varying Signal Amplitude

In analogy with Heaviside’s differential operator, it is con-
venient to define the shift operator S, which operates on an
arbitrary sample x (i) according to the rule

S*x(i) = x(i-k) 9)

The shift operator allows us to relate the output of a linear
filter, defined by the operator P(S), to its input as y(i) =
P(S) x(i). Since the z-transform of a k-increment delay is
z-% it follows that the transfer function of the above filter
in the z-domain is £(z). Making use of the shift-operator con-
cept, the digital loop equations become

8(i) = 6(i)-8() (10a)

(10b)

y(i)
8(i)

A1) 9() + (D)

1l

F(S)N(S)y () +¥,(i) (10c)

Defining the total phase process £(i) = d (i) + ¥, (i) + ¥,(i) -
y,(i). Eq.(10) can be solved for the phase error, hence the
phase detector output, as

6(i) = } I +A(i>F(S)N(S)}" £(i)

(A FES)NE) "W
N\ TFAD FEING) | 4D (112)
NN RIREAG
y(i) = AU |1 HAWD FS)NGS) T ED + 50y
(11b)

Thus, the phase detector output contains a term that depends
on the phase £(/), and one that depends on the additive noise.

C. Reconstruction of the Phase Process

We observe that in Egs. (11a) and (11b) both the phase and
additive noise processes are operated on by time-varying opera-
tors, due to the fluctuating amplitude A4 (i). Since the ampli-
tude fluctuations vary slowly compared to both the loop
response time and noise correlation time, and since estimates
of the amplitude process are available, we may attempt to
reconstruct the original processes by passing the phase detec-
tor output through a time-varying inverse filter of the form

P(S) = {1 +A(i) F(S)N(S)}
FYE)

(12a) -

If »(i) denotes the response of P(S)to y (i), the operation of
the filter may be described by the recursion

4 2
v(i) = 3 a(D)y(i-D+ ki) v(i=1) (12b)

1=0 =1
The coefficients are derived in the Appendix. The filter’s
response to the phase detector output is

LN AOFSNS) |~ e
v(i) l 0 ,y(z) g+ 10

(13)

This is an estimate of the total phase process corrupted by a
modified noise sequence. That this noise sequence is also white
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follows from the following argument: over a suitably short
time interval, such that channel statistics remain fixed, we can
express the amplitude fluctuations as the sum of an average
value plus a zero-mean random process

Ay = A+ ‘-/T1+n"(i)) 14
(i) = A+n (i) = T (14a)
The modified noise sequence now becomes
. . . . 2,
nQ(.t) _ nQ(z) . nQEI) . nA_(_l) N nA_(z) )
A(i) Z[l +"A£1)} A A 22
n (Hn (i)
A A (14b)

A

where 1, (7) is the series inside the brackets. Assuming that
the additive noise is independent of the amplitude process,
the autocorrelation function of the modified noise sequence is

=

A

= (T\-2
R(:g)(k) (4) R,,Q(k)R,,eq‘(k) (15)

For uncorrelated noise samples we have R,,Q(k) =(N,/2) (%),
which reduces Eq. (15) to

R k) = (4 -2(&)12 (0)8(k) & NLE 8(k)
(n_g) ( ) ) 2 neq - 2
A

(16)

Therefore nQ(i)/;f(i) is white, with a spectral level corre-
sponding to the coefficient of the Kroenecker delta function.
The power spectral density of the reconstructed observables
consists of spectral contributions from both the phase and the
modified noise processes:

N
S,() = SN+ =5 (17)

In our application, the contributions of Doppler and receiver
phase processes are small. The main components of the phase
process are due to the solar corona and to transmitter oscilla-
tor instabilities. Both effects produce a power-law type phase
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spectrum near the carrier frequency, the first with exponent
8/3 or less, and the second with exponent 3. Thus we expect
the observed spectral density to be composed of a constant
spectral level due to the inverse-filtered white noise, plus a
power law component due to the dominant phase process.

The estimated power spectral density for the data sequence
under consideration is shown in Fig. 4. The white noise com-
ponent is clearly evident. This figure is discussed further in the
next section where we consider the problem of estimating the
relevant channel parameters from the reconstructed sequence.
These estimates may be used to monitor channel conditions,
or to adaptively match receiver parameters to channel condi-
tions for improved performance.

IV. Parameter Estimation

In this section we estimate the parameters of the spectral
density of the received phase. First we discuss the method
used to estimate the spectral density, and then describe the
maximum likelihood (ML) algorithm used to estimate its
parameters.

A. Power Spectral Density Estimation

An extensive body of literature exists on spectral estima-
tion algorithms. Here we use a simple but well established
approach known as Bartlett’s procedure [7]. This technique
is easy to implement, but yields good results whenever spectral
resolution requirements are met with a small fraction of the
available samples. In particular, estimates of the power spectral
density are obtained by averaging independent periodograms,
which can be generated by means of efficient FFT algorithms.

The periodogram of length N, 1) (w), associated with the
sequence v (i), is defined as

Iy (@) = jlv | v(er)|? (18a)

where

) N-1
V(') = D v(i)e ™!

i=0

(18b)

is the discrete Fourier transform of the sequence v(#). The use
of periodograms in spectral estimation is justified on the
grounds that in the limit as N approaches infinity, the ex-
pected value of the periodogram approaches the desired power
spectral density. With R, (m) the autocorrelation function of
v. we have from [7] that if R (m) =0 for all m > m, then
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(19)

The FFT generates samples of the periodogram, evaluated at
the points w = 27k/N. With

V(k) = VE) yornipn (20a)
it follows that
Iy(k) = IN(““’)‘wszwk/N (20b)

Suppose the observed samples were obtained from a white
Gaussian process, and therefore are jointly Gaussian random
variables with the autocorrelation function R (m) = R (0)
5 (m). Consequently, the transformed samples V(k) become
complex Gaussian random variables. The correlation between
the transformed samples at frequencies corresponding to & and
! can be evaluated directly from the expression

2

N~

—
»..

2w
N V) V(D) = si)v(n) e N (i-in)

=0

(=]
X

(R, . k=1

o

where * denotes conjugation, and the overbar denotes the
expectation operator. It follows from Eq. (21) that the fre-
quency samples are uncorrelated, hence independent by the
Gaussian assumption. Since for & = / the correlation expres-
sion corresponds to the expected value of the periodogram, we
conclude that for white processes the periodogram is an unbi-
ased estimator of spectral level.

(21)
k o+ 1

This result may be generalized by observing that any desired
spectral characteristics can be obtained by filtering a unity
spectral level white sequence with the appropriate linear filter
{7]. Thus, if the squared magnitude of the frequency response
is chosen to be S (w), the resulting periodogram expressed in
terms of Iy, (w), the periodogram of the white sequence,
becomes

Iy (@) = $,() fy, (@) (22)

This expression is not exact because of the transient end
effects associated with the filtering of a finite length sequence.

However, if the sequence is long compared to the memory of
the filter, then Eq. (22) should yield an accurate representa-
tion of the actual spectrum. Thus we conclude from Eqgs. (21)
and (22) that the spectral samples remain independent, with
magnitudes that approximate the actual spectral level at that
frequency. It has been shown [7] that the variance of the sam-
ples is

sin(2mk)| 2
. ( 21'rk) (23)
Nsm(—N—

var (I, (k)) = S2(k)) 1+

from which it follows that for all kK > 0, the standard deviation
of a periodogram sample is equal to the spectral level. The
resulting wild fluctuations from one sample to the next render
a single periodogram somewhat useless as a spectral level esti-
mator. The problem can be ameliorated by averaging a large
number of independent periodograms, as originally proposed
by Bartlett. If M independent periodograms are averaged, the
variance at any frequency is reduced by M, while the expected
value is preserved. Denoting the averaged periodogram samples
by By, (k). we have

im £18, () = 5k) (242)
N [N
variBN(k): = MS2k): k=12 N-1
(24b)

The spectral density estimate for the data under consideration
is shown in Fig. 4, obtained by averaging 100 independent’
periodograms of the reconstructed phase detector output. A
log-log plot was chosen to facilitate comparison with theory.
The agreement with the power-law model is evident in the low
frequency regions, while dominance of the white noise compo-
nent occurs at higher frequencies.

B. Maximum Likelihood Estimator

The maximum likelihood estimator described here processes
independent frequency samples to obtain estimates of the
desired spectral parameters, namely the coefficient S, the
exponent «, and the equivalent noise spectral level Ny, /2.
After some preliminary processing, the channel-induced sig-
nal distortions were found to be separately accessible from the
in-phase and quadrature samples, corrupted by independent
additive noise samples. We begin by developing the necessary
mathematical models.

Since the final spectral estimates are averages of many inde-

pendent records, the Central Limit Theorem may be invoked
for approximating the density of the frequency samples. Al-
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though each spectral sample is the squared magnitude of a
complex Gaussian random variable and therefore is chi-squared
distributed with two degrees of freedom, the operation of
averaging a large number of independent samples transforms
the averages to Gaussian random variables with the mean and
variance given by Eq. (24). Thus we can model the problem as
one of estimating the parameters of a deterministic function g
from its noise-corrupted samples y:

y(k) = g(k; a) +n(k) (25a)

glk; a) = al +a2 (;T)_GB (25b)

Here n,(k) is an equivalent noise sample representing the esti-
mation error. While n,(k) is zero mean, its variance depends
on the square of the spectral level and on the number of sam-
ples averaged, as in Eq. (24b). Since the frequency samples
are assumed to be independent, we can write the joint density
of the N - 1 samples (excluding the sample at & = 0, since
this sample cannot possibly obey the power-law relation of

Eq. (1)) as

N

p(yla) = _]__]1 exv{ (

2E) =20\ (502 0kyy 102
\/—(k));(’”’“)

(26)

withy = (¥(1),¥(2),...,¥((N/2~1)),a=(al,a2,a3). For
our case, o(k) = g(k)/~/M. Taking the natural log. and
keeping only those terms that contain the parameters of
interest, the “log-likelihood” function becomes

N
>-1

2
AG) = -3 {zn(g(k)ﬁ—(;((;f))) 'M%}

k=1

(27)

Withal = N,z/2.22=S,, and a3 = &, the maximum likelihood
estimates are those values that simultaneously maximize Eq.
(27), for the given observation vector. Equivalently, we can
find the minimum of the negative of the log-likelihood func-
tion. This we proceeded to do, using the simplex method of
function minimization described by Nelder and Mead [8].

C. Results

The following parameter estimates were obtained for the
data taken on DOY 357, at an SEP angle of 2.25 degrees:
S, =2.13 X 1073 r2/Hz, @ = 2.186, and Ny /2 = 8.77 X 10~%
r?/Hz. The exponent compares favorably with theory, which
predicts a frequency exponent of less than 8/3 for the phase
spectra this close to the Sun. The phase spectral coefficient §;
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is also in order-of-magnitude agreement with the measurements
in [5], after our result is extrapolated to S-band (2-GHz) fre-
quencies. The estimates obtained by the ad hoc estimator,
which does not take into account the time-varying nature of
the closed-loop transfer function, were 7.6 X 10~% for the
white noise component and 3.7 X 102 for the phase spectral
coefficient, assuming a power-law exponent of 8/3. The impor-
tance of our signal reconstruction technique is well demon-
strated by this example, since the ad hoc estimate of the spec-
tral coefficient appears to be in error.

The degree of complexity required to evaluate the perfor-
mance of the maximum likelihood estimator by analytical
means, such as the Cramer-Rao bound, is beyond the scope
and interest of this article. However, performance can be
easily evaluated by simulation techniques. Using the spectral
model defined in Eq. (25b) with the parameter values al =
8.77 X 1074, a2 = 2.13 X 1073, a3 = 2.186, and adding an
independent Gaussian noise sample with the proper variance to
each frequency sample, parameter estimates were obtained for
1000 independent simulated spectral densities. The sample
means agreed well with the modeled values, indicating that
unbiased estimates were obtained. With obvious notation, the
standard deviations of the estimation errors were o, = 9.3 X
1076, 0,, = 9.5 X 1075, and g,5 = 4.7 X 10-2. Therefore the
simulations indicate very good accuracy in the final estimates.
We must remember, however, that our underlying model is
only approximate, since we have assumed a single power-law
component to the phase spectrum where in fact there may
have been two. In addition, other sources of error in pre-
processing the data, such as the use of inaccurate amplitude
estimates, were not taken into account in the simulations.
However, we did succeed in demonstrating a useful technique
for reconstructing phase spectra from observables corrupted
by random amplitude effects.

V. Conclusions

Recently, the JPL Advanced Receiver was used to track
Voyager 2 as it passed behind the solar corona. During track-
ing, severe fluctuations were noted in the amplitude of the
received signal, particularly at small SEP angles. Since these
fluctuations introduced a corresponding random variation into
the transfer function of the tracking loop, previous spectral
density estimation techniques that assumed a time-invariant
loop became inadequate. Thus, a method was developed to
extract the desired parameters from the recorded data, taking
into account the fluctuating signals.

Our approach is based on the observation that random vari-
ations in the transfer function could be attributed directly to
the fluctuating amplitude, suggesting the use of a time-varying
inverse filter to remove these unwanted amplitude effects from



the phase-detector output. This required estimates of the ran-
dom amplitude. Since both in-phase and quadrature samples
were recorded, the necessary amplitude estimates could be
obtained from the in-phase samples, provided the loop re-
mained in lock. Thus, we were able to recover the phase error
process from the phase-detector output by means of a time-
varying inverse filter operation. Subsequent spectral analysis
and parameter estimation yielded results that agreed both with
theory and with measurements made independently by other
researchers, confirming the validity of our approach.

The ability to obtain real-time estimates of the random
amplitude function along with the relevant phase and noise

spectral parameters opens up the possibility of adaptive con-
trol, where the system parameters are continuously adjusted to
achieve optimum performance. This would be useful whenever
significant amplitude variations occur, as with a wobbling
spacecraft antenna, mechanical vibrations at the receiving
antenna, solar plasma effects, tropospheric turbulence, etc.
Perhaps a rudimentary form of an adaptive system could be
demonstrated during the upcoming solar occultation of Voya-
ger 2, in January of 1989. Such a demonstration might have
a significant impact on future centimeter and millimeter
wave DSN system design, where fluctuations in received sig-
nal strength due to atmospheric effects may be routinely
encountered.
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Appendix

Derivation of the Coefficients for the Inverse Filter, P(z)

The coefficients of Eq. (12b) are derived.
From equation (12) of [9],

G(2)

it

AKF(z)N(z)

4B, T 4B, T\
r L L
2(2+1)[r+1 (z—1)+(r+1> zjl

(z-1)* 22

[

(A1)

Let us assume that the variation in 4 (i) is slow relative to the
response time of the loop., which was the case in our experi-
ment. Thus, for short intervals we can use the approximation

A(i) = AK
By Eq. (12a),
1+G(z
P(z) = % (A-2)
)
-1 |7 2 2,7 2 -3 7, 4
1-22 +|:§(d+d)+1:|z +1d 2 - Ldz
1-22z1 4272
P =
(2) 1K
(A-3)
where
_ AT
r+1

Designating the input and output of P(z) as Y(z) and V(z),
respectively, we have

(A-4)

Then from (A-3) and (A-4),
V(z)[1-2271+272] = y(2) [I ~2z71
r 2 -2
+[3(d+d )+l]z
r 2,3_7T ; -a
+ 3 d*z 3 dz ]

(A-5)
Taking the inverse Z transform,

v(k)y-2v(k-1)+v(k-2) = y(k)-2y(k-1)

+B (d+d2)+1]y(k-2)

+5d? y(k = 3) - Zdy(k - 4)

(A-6)
Solving for v(k) yields
- r 2
v(k) = y(k)-2y(k - 1)+[§ (d+d )+1:| y(k-2)
- d*y(k-3)- 2 dy(k~4)
+2v(k-1)-v(k-2) (A7)

The coefficients of Eq. (12a) can be obtained by inspection
from Eq. (A-7).
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