Data Decoder Assembly

C. R. Grauling
DSIF Digital Systems Development Section

Future deep space missions (e.g., Pioneer F/G) will be using convolutional
coding. The present configuration of the Deep Space Network (DSN) is not
suited to perform the decoding of this class of codes. This function (amongst
others) will be performed by the Data Decoder Assembly which is scheduled
for installation in the DSN in September 1971. This article presents a description
of the Data Decoder Assembly and its implementation.

I. Introduction

The Data Decoder Assembly (DDA) is a new addition
to the DSIF Telemetry and Command Subsystem sched-
uled for installation in the DSN in September 1971. The
DDA will be capable of performing three mutually
exclusive functions: sequential decoding of convolution-
ally encoded data, block decoding of 32/6 or 16/5
biorthogonal block coded data, and high-rate data for-
matting of coded or uncoded data for transmission on
the Wideband Data Link with simultaneous recording
of the data on magnetic tape. The sequential decoder
function will be implemented at approximately 25,000
computations per second and will be useful at data rates
of up to 2048 bps. The block decoding function will be
used at the 26-m antenna sites only and will be capable
of decoding at data rates of up to 2048 bps. The high-
rate data formatting function is required at the 64-m
antenna sites only and will be implemented at rates of
up to 250 kbps.

170

This article presents a description of the implementa-
tion of the DDA. The major DDA component is a small
microprogrammable digital computer. The discussion is
in three parts. Each part is a description of the hard-
ware, firmware, and software development, respectively.

If. DDA Hardware

The DDA consists of a single standard DSIF equip-
ment rack. Each rack contains the following equipment:

(1) DDA Central Processing Unit (CPU)—Interdata
Model 4 computer.

(2) Interface electronics assembly.

(3) Power supplies.

(4) HSDL/WBDL buffer (at 64-m antenna sites only).
Figure 1 is a block diagram of the DDA. The DDA

Central Processing Unit and interface electronics assem-
blies are briefly described below.

JPL TECHNICAL REPORT 32-1526, VOL. IV

A. DDA CPU

The DDA CPU is an Interdata Model 4 computer
with the following optional equipment:

(1) Two high-speed direct memory channels (selector
channels).

(2) Magnetic tape controller and selector channel (at
64-m antenna sites only).

(3) Sixteen-line interrupt module.

(4) Four 16-bit programmable input/output (I/0)
channels.

The computer is microprogrammable and has a full
instruction set which is an emulation of a subset of the
IBM 360/20 instruction set. In addition there is a set of
special DDA instructions which are used to implement
functions in which computation speed is critical, such
as the sequential decode function.

B. Interface Electronics Assembly

The interface electronics assembly consists of a set of
functional subassemblies. Each functional subassembly
consists of a single IC socket panel with wirewrap
interconnections. Each socket panel contains from 100
to 150 sixteen-pin dual in-line package integrated cir-
cuits. The socket panels plug into a wirewrapped back-
plane assembly which accounts for all the interconnec-
tions between subassemblies and external equipment.
Each functional subassembly is briefly described below.

1. FTS/DDA coupler. This subassembly provides a
means by which the DDA CPU can obtain Greenwich
Mean Time (GMT) from the Frequency and Timing
System (FTS). GMT is always available in binary-coded
decimal (BCD) format via this coupler. This subas-
sembly also contains a millisecond counter and hun-
dredths of a second counter. The millisecond counter
clears at one-second intervals and is readable by the
DDA CPU. The hundredths of a second counter auto-
matically clears at midnight GMT and is both readable
and loadable by the DDA CPU. This coupler also gen-
erates three interrupts synchronous with the 1-kpps,
100-pps, and 1-pps signals which are available from the
FTS.

2. SSA/DDA coupler. This functional subassembly
provides the interface necessary to allow symbols to be
transferred directly into the DDA CPU core memory
via a selector channel. Some data formatting is done in

JPL TECHNICAL REPORT 32-1526, VOL. IV

hardware in this coupler. This coupler provides the
proper format for the following modes: uncoded, block
coded, or convolutionally coded (rates 1/2, 1/3, or 1/4,
frame synchronized or unsynchronized).

3. Decoded data buffer (DDB). This functional sub-
assembly provides the hardware data formatting and
the selector channel interface required for efficient trans-
fer of data from the DDA CPU to the Telemetry and
Command Processor (TCP). A single 16-bit control
word allows the program to define DDA CPU core
memory areas as sets of characters of 1, 5, 6, 8, or 16
bits, as well as define the number of characters to be
packed in a 24-bit word and the number of trailing
zeroes to be appended to each 24-bit word.

4. TCP/DDA coupler. This functional subassembly
handles all communications between the TCP and DDA.
It contains the circuitry required to decode the 1/0
controls generated by the XDS-920 in the TCP and per-
form the required input/output operations. Transfers of
data from the TCP to the DDA are accomplished
through the use of interrupts to the DDA CPU. The
TCP can, at any time, issue a command, energize out-
put M (EOM) instruction followed immediately by a
parallel output transfer (POT instruction). The data is
stored in a register in the coupler and the coupler gen-
erates one of three interrupts to the DDA CPU depend-
ing on which EOM had been issued. The interrupt
processor in the DDA CPU then reads the data out of
the register into the DDA CPU core memory.

The TCP/DDA coupler contains the hardware neces-
sary to generate interrupts to the TCP. There are two
interrupts which the DDA can generate. The generation
of these interrupts is controlled via the interrupt status
word (ISW), which is a 16-bit hardware register in the
TCP/DDA coupler. The ISW is loadable by the DDA
and readable by the TCP (via a dedicated command
and parallel input sequence). Interrupts to the TCP are
generally generated whenever the ISW is loaded by the
DDA. The two most significant bits of the ISW are used
to determine which of the two interrupts is to be gen-
erated. The remainder of the bits can be used as a
message to the TCP concerning the interpretation of
the newly generated interrupt. In this manner, it is pos-
sible for the two available interrupts to be used for
multiple functions.

Data transfers from the DDA to the TCP are always

via the DDB. The normal procedure is for the DDA
CPU to issue a format command to the DDB, set up

171

the DDB selector channel and then load the ISW,
thereby generating the proper interrupt to the TCP.
The TCP response is to take the data as fast as it can
via its parallel input channel. The TCP coupler mon-
itors the TCP parallel input activity and controls a TCP
busy flag which stops the selector channel whenever
the DDB data registers are full and there is a word
ready for transfer to the TCP.

5. Interrupt coupler. This subassembly provides the
voltage level conversion circuitry for the 24-line parallel
input bus and interrupts to the TCP and the interrupts
associated with devices connected to the TCP emulator.
This module also provides the acknowledge interrupt
circuitry for interrupts generated by the FTS/DDA and
TCP/DDA couplers to the DDA CPU. The DDA master
clock is also located on this module.

6. TCP emulator (at 64-m antenna sites only). This
functional subassembly is built on two circuit panels
and provides four identical I/O channels which are
electrically indistinguishable from the parallel input/
parallel output (PIN/POT) channels of the XDS-920
computer used in the TCP. Special firmware is provided
to operate the TCP emulator, providing emulation of
the four XDS-920 parallel I/0 instructions. The TCP
emulator makes it possible to plug a Block Decoder
Assembly (BDA), HSDL/WBDL, or Symbol Synchro-
nizer Assembly (SSA) into the DDA without hardware
modification.

Ill. DDA Firmware

The primary factor involved in the choice of the Inter-
data computer was the computational speed and flex-
ibility available through microprogramming. A set of
fifteen user-defined instructions has been built into the
processor’s read-only memory which allows the proces-
sor to perform relatively complex computations such as
the sequential decode and tail correlation for frame
synchronization acquisition at a rate which is approxi-
mately six times faster than the equivalent computation
could be done using the standard instruction set. In
addition to the extra instructions, the processor’s
interrupt-handling firmware has been modified to in-
clude the option of treating external interrupts on a
priority basis. The special priority interrupt system firm-
ware provides the queuing and servicing of interrupt
processes in order of priority as defined by the interrupt-
ing device address. In this section this special firmware
is briefly described.

172

A. TCP Autoload

This instruction is used to transfer an entire program
from the TCP to the DDA. It is intended to be executed
in the event of the occurrence of a program load inter-
rupt from the TCP. Once execution of this instruction
has started, the processor is put into a loop testing for
the occurrence of program load interrupts. Each pro-
gram load interrupt causes the processor to input a
halfword (16 bits) from the TCP/DDA coupler. The
first two halfwords are treated as beginning and ending
addresses. Subsequent halfwords are stored in consecu-
tive memory locations starting at the beginning address.
The instruction terminates when a halfword is stored
in the ending location. All other external interrupts
which occur during the execution of this instruction are
acknowledged but no action is taken.

B. Compute Tail Correlation

This instruction makes use of the so called “quick
look” property of the class of convolutional codes cur-
rently being used to compute the likelihood that a given
position in the received symbol stream is the end of a
frame of coded data. Repeated execution of this in-
struction at all possible positions in the symbol stream
is sufficient to find frame synchronization with arbi-
trarily high confidence.

C. Sequential Decode

This instruction implements the sequential decoding
algorithm. It is necessary that there exists a properly
formatted data buffer containing the received symbols
and tail sequence associated with one spacecraft data
frame. It is also necessary that the processor’s general
registers be loaded with all the parameters required by
the instruction such as the location of metric tables, the
impulse response, and the tail length. The execution
time of this instruction is a variable depending upon
the frame size and the details of the noisy received
data. It is therefore necessary that this instruction be
interruptable. This is accomplished by having the sequen-
tial decode firmware periodically test for the pres-
ence of an external interrupt. If an interrupt is detected,
the firmware stores some of the processor microregisters
in memory and does a premature exit with the location
counter pointing to the interrupt return instruction.
After the interrupting process has been completed, the
interrupt return instruction is executed. Interrupt return
is another user-defined instruction which restores the
microregisters and transfers control back to the sequen-
tial decode instruction for continuation. Upon normal

JPL TECHNICAL REPORT 32-1526, VOL. IV

completion of the sequential decode instruction, the lo-
cation counter is incremented sufficiently to skip over
the interrupt return instruction and the associated micro-
register storage area.

D. Conditionally Or Block

This instruction is used to load tail sequence into the
received data buffer prior to the execution of sequential
decode. It can also be used to add the comma-free vec-
cor into received data buffers for the block decode. The
instruction performs ‘a logical “exclusive or” of a pro-
grammable data mask into a buffer of up to 32 consecu-
tive memory locations conditioned upon presence of
ones in a 32-bit programmable register.

E. TCP Emulator Instruction

There is a set of four user-defined instructions which
operate in conjunction with the TCP emulator hardware
to completely emulate the PIN-POT I/O channel of the
XDS-920 computer used in the TCP.

F. Halfword 1/0 Instructions

There is a set of four I/0 instructions which are used
to initiate data transfers over the 16-bit I/O channel
between external devices and memory. These instruc-
tions are the counterparts to the standard I/0O instruc-
tions which are 8-bit byte oriented.

IV. DDA Operational Software

Although the DDA has considerable special-purpose
hardware and firmware to assist in performing the re-
quired functions, the primary control of the DDA is
implemented in software. In this section, the opera-
tional program which implements the sequential decode
function is discussed in order to illustrate the role that
is played by software in the DDA. Figure 2 is the func-
tional block diagram of the operational program which
is used in the sequential decode mode. The various
blocks (except the DDA Executive) shown in this figure
may be thought of as subprograms. The system is imple-
mented by having the DDA Executive Loop continu-
ously checking for enabled subprograms and executing
them when found. In general, subprograms may be
enabled by interrupt processors or by the execution of
other subprograms. The following is a brief description
of each of the blocks.

JPL TECHNICAL REPORT 32-1526, VOL. IV

A. Memory Fill

This subprogram is enabled by the occurrence of a
program load interrupt and initialization interrupt.
(These interrupts are generated by the TCP coupler,
see Section 1I-B-4.)

B. Acquire Frame Synchronization

This subprogram is enabled under any of the follow-
ing conditions: The whole system is initialized (such as
at the beginning of a pass), the sequential decoder has
declared itself out of synchronization due to excessive
erasures, or the TCP has commanded that the sequential
decoder go out of synchronization due to an anticipated
data rate change. Once enabled, this subprogram ac-
quires frame synchronization by repeated execution of
the compute tail correlation instruction (see Section II1-B)
at all possible positions in the input system stream. The
likelihood functions obtained in this fashion are re-
tained and compared against a series of threshold values
in order to find a likelihood value that implies a prob-
ability of synchronization which is sufficiently high to
declare that synchronization has indeed been acquired.

C. Sequential Decode

This subprogram decodes a frame of convolutionally
encoded data. It is enabled whenever frame synchro-
nization has been acquired and a new frame of data
properly formatted for sequential decoding has been
loaded into core by the SSA coupler. This subprogram
sets up the general registers and executes the sequential
decode instruction. Normally, the sequential decode
instruction is completable and upon completion this
subprogram sends a message to the I-1 queue that a
frame of decoded data is ready for transfer to the TCP.
In the event that the sequential decode instruction is not
completable (due to an excessively noisy frame of data),
the sequential decode is artificially terminated and the
erasure subroutine executed.

D. Erasure

This subroutine is executed when the sequential de-
code subprogram is unable to decode a frame in the
allotted time. This subroutine sends a message to the
[-2 queue that there is an erased frame ready for
transfer to the TCP. If this subroutine is executed three
consecutive times without a successful sequential de-
code, the decoder is declared out of synchronization
and the acquire synchronization subprogram is enabled.

173

E. Memory Recall

This subprogram is enabled by the memory recall
interrupts from the TCP. Recalled areas of DDA core
are prepared for transmission over the I-2 interrupt lines.

F. I-1 Queve and I-2 Queve

These two subroutines control the transfer of data to
the TCP by stacking I-1 and I-2 transfer requests. I-1
is reserved for decoded data; I-2 is used for all other
transfers such as erasure data and special data re-
quested by the TCP.

174

G. DDA Executive Loop

The flow chart of the DDA Executive Loop is shown
in Fig. 3. Since all data transfers to the TCP must occur
through the DDB, I-1 and I-2 transfers are mutually
exclusive—priority being given to decoded data over
the I-1 interrupt line. Each cycle of the Executive Loop
begins with monitoring of the transfer queues and initi-
ation of transfers when possible. Subprograms are then
accessed on a priority basis and executed when enabled.
When all enabled subprograms have been executed, the
Executive Loop begins a new cycle.

JPL TECHNICAL REPORT 32-1526, VOL. IV

FTS l FTS/DDA
I COUPLER 1/0 BUS
1/ BUS
i POT / -
Tep PIN TCP/DDA I
TCP]
[INTERRUPTS COUPLER |1
\vl
, t DECODED
DATA /o sys
, DECODED =
DATA —
, BUFFER - :lsum .
UNCODED DATA
, {CONVOLUTIONALLY
CODED CASE) DDA CPU
SCA ! UNCODED DATA ©cA)
(BLOCK CODED CASE)
l $5A/DDA
COUPLER SELCH 2
| SSA DATA
i
$SA DATA READY
| PULSE
1
| POT
[PIN
! INTERRUPTS (OPTIONAL)
l POT
BDA | PIN
' INTERRUPTS
I L
Tce 11
TO T6-LINE
EMULATOR 7
O—Gi'—\ FoT INTERRUPTS INTERRUPT
HSD,/WBD PIN MODULE
1/O ASSY INTERRUPTS
FROM SELCH 3
GCF |
POT — — —+ 4+ —
| SPARE —]
INTERRUPTS
|

JPL TECHNICAL REPORT 32-1526,

VOL. Iv

OO

DUAL HDTR

175

$SA DATA e DATA DECODED
——————1
AFRQAliAE SEQUENTIAL | DATA -1
TIME FTS
e TIME DECODE QUEUE
INFORMATION
—————
ALARM | 12 DDA TCP
NO DATA EXEC
QUEUE RESPONSE
f—
RASURE 12
TABLES ERASURE E RN DATA
QUEUE
REQUESTED
DATA
TRANSFER [
TABLE
MEMORY DATA
FILL

Fig. 2. DDA operational program functional block diagram

‘ BEGIN)

i1 vEs | TRANSFER
TRANSFER POSSIBLE DATA TO
READY TCP
‘2 YES
NO DATA WRITE
TRANSFER POSSIBLE 1SW
READY
12 TRANSFER
DATA YES UPDATE
TRANSFER POSSIBLE DATATO ™ poINTERS
READY ce
IS ANY s PERFORM RESET
SUBPROGRAM THAT i THAT
REQUESTED SUBPROGRAM FLAG
NO
Lno
YES

Fig. 3. DDA Executive Loop flow chart

176 JPL TECHNICAL REPORT 32-1526, VOL. IV

