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In order to obtain performance superior to that of the (32,6) first-order Reed-
Muller Code used on Mariner Mars 1969 and 1971 spacecraft, bandwidth limita-
tions make it necessary to consider Reed-Muller codes of higher orders. In this
paper, we investigate the weights which can actually occur in the third-order
Reed-Muller codes of lengths 256 and 512. For length 256, we succeed in finding
the exact set of integers which occur as weights. For length 512, we do the same,
except that we cannot decide whether 140 and 372 occur as weights or not. We
show, however, that there are no words of weight 132 or 380, a result which adum-
brates an important new theorem on Reed-Muller codes.

l. Introduction

Reed-Muller (RM) codes are among the most useful
binary block codes. For instance, the first-order RM code
of length 32 is the celebrated (32,6) biorthogonal code
which was used on Mariners Mars 69 and ’71. In order to
obtain performance superior to that of the (32,6) code,
one would like to use a longer RM code. Unfortunately,
the bandwidth requirements of longer firsi-order RM
codes are such as to render them useless for NASA mis-
sions. However, higher order RM codes require less band-
width at a fixed length than the first order codes, and so it
becomes important to investigate the feasibility of imple-
menting these codes.

As a first step in this direction, researchers have begun
to investigate the weight spectrum of these codes. The
weight spectrum of the first-order RM code is trivial:
except for the all-zero word and the all-one word, all
words have weight half the block length. Recently,
through the work of Kasami, Berlekamp, and Sloane, the
complete weight enumerator for the second-order RM
codes has been obtained.
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The weight enumerator for the third-order RM codes,
however, remains unknown, although for lengths 128 or
less it can be obtained by various ad hoc techniques. In
this paper we investigate the weight enumerator for the
third-order RM code of lengths 256 and 512, with the
preliminary goal being to identify those weights which
actually occur in these codes. For length 256, our result
is that all weights which are not eliminated by known
theorems can actually occur. For 512, however, we dis-
cover that, although no previous theorem suggests it,
no words of weights 132 or 380 occur; this adumbrates
an important new theorem on RM codes. Finally, weights
140 and 372 remain undecided; i.e., we can neither show
that they do not occur nor exhibit words of that weight.?

Il. Summary of Known Results

RM(r;2™) denotes the rth order RM code of length 2™
The following theorems are known:

TueoreM 1 (Ref. 1). The minimum distance d in RM (r;2™)
is 2m,
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TueoreM 2 (Ref. 2). If

am

> Az

i=0

is the weight enumerator of RM (r;2™) then
Ai = AQ"I_i

Tueorem 3 (McEliece, from Ref. 1). For the same weight
enumerator,

-

i£0 (mod?2 )implies A; =0

By the definition of RM (r;2™) (Ref. 1) each code vector
corresponds with an rth degree polynomial in m vari-
ables over GF (2), and the weight of this vector is the
number of times that this polynomial has value 1.

So instead of studying the vectors we can study the
polynomials. In this paper we need both points of view.
We denote by |f|» the number of times that £, as a func-
tion of m variables, is 1.

Example. Let f be an rth degree polynomial in m vari-
ables (over GF (2)); then Theorem 1 says

Iflm =0or |f|mé2m—r
and Theorem 3 says |f|n is divisible by 2 [2]-

Tueorem 4 (T. Kasami and N. Tokura from Ref. 3). If f
is an rth degree polynomial of m variables, r <2 and
0 < |f|m <2m1(0 < |f|m < 2d), then f is transformable
by any appropriate affine transformation of the variables
into one of the following forms:

(4a) xi22 © * 0 Xpop (Krper 0 X F Xpa o Xp)
where m=r 4y r=u =3 or

(4b) X1 KXo (xrAlxr + XXy + 0+ xr+2u—3xr+2u—z>
wherem —r +2>=2,=29

and in both cases
(40) lflm = Qm-T+1 . Om-ril-p
=2d — 2d 2"

Remark. |f|, is invariant under affine transformation
so that this theorem characterizes the codewords with
weight < 2d.

1Since this paper was written it has been possible to show that no
words of weight 140 or 372 occur, either. In addition, the weight
enumerator for the third-order code of length 256 has been found.
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Tueorem 5 (McEliece, Ref. 1).

lf'm =3 (_I)Igl g4y (9) -1

gCf
9#0

where
|g| = the number of terms in the polynomial g
v (g) = the number of variables not involved in g

g C f means all terms of g are terms of f

As an immediate consequence of Theorem 5 we find

|f(x1, ..

s xm—z) + Xp-1%m lm =

om-2 . 9. f(x1, I ,xm—z)lm—2
(1)
If(xla T :xm—S) + xm—zxm~1xm|m =

2m-3 4 B f(xb o ,xm—s)Im—a
2)

If (2, Xmes) + XmeoXmaZm + X | =
3.2m_3 +2° f(xl, ot ,xm_a)lm_3
3

These relations will be useful in the next paragraph.

. Tables

We start our work with some tables. We wish to know
whether there are more gaps in the weight enumerator
than those given by Theorems 1 through 4. We have for-
mulated Tables 1 and 2 for RM (3;2%) and RM (3;29).
By Theorem 2 we are only interested in weights up to
2m-1 and because we are looking for gaps, we only need
to find code words of a certain weight to see that there
is no gap.

We did not succeed in finding a codeword of weight 132
or 140. We are therefore left with only the possible gaps
Az = 0or Ay, = 0. In the next section we will show that
A]gg - O.

For a while we believed that if one adds to a codeword
¢ € RM (3;2™) an appropriate codeword d e RM (2;2™), the
weight of ¢ + d would be less than twice the minimum
distance in RM (3;2™) so that Theorem 4 would be appli-
cable. However, by counting the number of codewords in
the second- and third-order RM codes and the number of
equivalence classes of the codewords of weights less than
2d, it can be shown that this cannot be true form = 9.
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IV. A,;,=0in RM(3;2°)

Let f(xy, ** * ,%) = p (x5, -
then [fls = |p|s + |p + q]s

.. ’xg) +x9q(x1, . ’xs);

Lemma L If f(x, - ,x) =p(x, 0, %) + 2 q (%1, , %)
and |pl, > |p + q|s then there is f' (x,, - - -, %) =
P(x, %) + %9 (%1, x,) with |p']s <|p"+q'|s
I[P”ls =|p+4qls Ip"+q'|s = |p|, and therefore |f], =

g+

Proof. Take p"(x1, ", %) = p (%1, """, %) + q (%1, ***, %s)
and q’ (%1, " * , %) =.q (x4, * * * ,%s). Q.E.D.

If flx, - x) =p(x, -0 %) T xq (21, -+, %)
is a third-degree polynomial then p (x; - - - , x5) is of third
degree and g (x,, - - -+ ,xs) of second degree. By Lemma 1
we need only look for a polynomial p(x,, - - -, x5) of
third degree and a polynomial q (x;, - - - , xs) of second
degree with the property |p|s +|p + q|s = 132 and
|p|s=|p + q|s. The occurring weights in the third order
RM code of length 2¢ are 0,32,48,56,64,68,72, - - - , so by
Lemma 1 we only have to consider |p|, = 0,32,48,56,64.
This proves Lemma 2.

LemMma 2. If f(x,, -, %) =p(x1, ", %5) F%5 q(%1, "+, %5)
has weight 132, then we may assume

(Ipls Ip +qls) =a) (0,132) or
b) (32,100) or
c) (4884) or
d) (5676) or
e) (64,68)

We now consider these possibilities separately.

(@) (Ipls |p + qls) =(0,132)
|pls = 0 implies p=0, so we want |g|s = 132 but q is
second degree, and 132 does not occur in RM (2;28). (See
Theorem 3.) So (a) is impossible.

() (Ipls |p + qls) = (32,100)

By Theorem 4 is p transformable to x,x.x;. So the ques-

tion is, is there a second polynomial q (x,, - - - ,xs) with
[2:1%2%5 + q (%1, © -+, %5)| s = 1007
|xax2xs + q (1,22, 0 L %xs)|s =[G (0%, - - - 2|+

+lxxs + g (Lxs, - -0 x8) s

Both terms are weights in RM (2;27) and by Theorem 3
divisible by 8; but 100 is not divisible by 8.

Conclusion. (b) is impossible.

(© (Ipls |+ qls) = (48,84)

Theorem 4 shows that p is equivalent to x, (x.x; + x.%;).
By the same reasoning as in (b),

[22 (2225 + 2425) + q(xs, ", %5)|s = I(I(O,xz,"',xs)h

+ | 2axs + x4xs
+ q(1>x2,"',xs)|7

and is therefore divisible by 8, but 84 is not divisible by 8.
Thus (c) is impossible.

(@) (|pls Ip + qls) = (56,76)

Theorem 4 gives that p is equivalent to x, (x.%; + x,x;
+ x62;) OF to X, Xo%5 + XXX, Xy (XoXs + X4%5 + %eX;) can be
excluded in the same way as (c) because 76 is not divisible
by 8. So we want to find a second degree polynomial
q (xy, %) with |x260, + %2505 + q (x4, - -+, %s) |« =76,
This turns out to be impossible.

(d1) Suppose x:xs is a term in q (x;, * * - , %), SO

X)) =P (X, - 0 %) T xa (X, %)

+ xb(xy, - -

q(xl, c e
5 xe) + 2%

p is second degree, a and b first degree. Consider the
affine transformation x; = x, + b (x,, - - - , %) X} = x5
+a(x, - ,x)xi=x;,i=1, - 6 which does not
affect x,x.x; + x,x5x,. This transformation reduces our
problem to: can |x,x,%; + xx:%6 + p’ (%, * **, x6) + 2%:%5 | s be
767 Equation (1) gives us that this form is 64 + |x,x.x5
+xxsx6+p’ (%1, - - -, %) | and Theorem 1 gives that this
last part is 0 or = 16; so it is never 76.

(d2) Suppose now that x:x is not a term in q (x4, - - - , xs),

SO q(xy, * - %) =p(xy, %) Fxa(xg, cc,%Xe)
+ xb (1, + © - ,%). p is second degree; a and b first de-
gree. If @ = 0 then |xxux; + xx5x6 + p (%0, * , %e)
+xb (2, 0 x) | = 2] xxaxs + o xxx +p (s, 0, xe)

+ xb (%1, -+, %) |- and so by Theorem 3 is divisible by 8;
but 76 is not divisible by 8.

So as£0 and also b=20. If =1 then |x,x.x; + x5,
+p(x, %)t asb(x, - x)|s = 27 and not
76. So a==1, and also b == 1. So both a and b are affinely
equivalent to x,, not necessarily simultaneously.

Therefore, x,x,x; + x5, + g (%, * * - ,%s) has to be
equivalent to either: (1) k(x;, -+ -, %) + %% + %%, if
a=Db,or (2) k(x, - ,x¢) + xx; + x.x5 if a = b, where
k(x;, - - ,x)is of third degree. In (1) apply xf = x< + x:,
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x, = x;, i~ 8 and then we are in a previous case. In (2)
[k (xy, - %) + 2% + %o%xs|s = |k (0, %, -, %6) + XX | 7
+ k(1,25 -, %) T %+ Xexs|r = |k (0, %5, 0 , Xg)
+ %,%5| - + 64 and is therefore by Theorem 1 =16 + 64 =
80. Conclusion: (d) is also impossible.

LemMma 3. If |f(x;, ©* * ,%5)|s = 132 for f e RM (3;2°),
then for any i, (|f(xi = 0)|s, |f(xi =1)|s) = (64,68) or
(68,64).

Lemma 4. If f(x, -+ - ,x,) e RM (3;2°) and |f|, = 132,
> then (|f(0,0,%; « -+ ,%5)|s |f(0, 1, %5 - -~ s X9)| 7
If(1,0,%5, - ,x0)| 5 |F(L L x5, ,%0)]7) = (32,32,32,36)
or 32,32,36,32) or (32,36,32,32) or (36,32,32,32).

Proof. Divide the word into the four parts corresponding

to (x1,%.) = (0,0)(0,1)(1,0) (1, 1):
X 0 0 1
X! 0 1 0
I } } } —4
a b c d

and let a, b, c, and d be the weights of these parts. Then
from Lemma 3

a+b=64, ¢c+d=68 A,
ora+b=68 c+d=64 A,
anda+c¢c=64, b+d=268 B,
ora+c¢c=68 b+d==64 B.

This gives four possible weight structures:

(1) A,B, * : :

6-b | b b ' e-_b
@ AB. Tt s e
) AB Fe T T4 Tes—b |
(4) AB. ot ey

By %, = x, + 1, (2) is equivalent to (1); by % =, + 1,
(3) is equivalent to (1); by 2] =, + 1, 2, = x, +1, (4) is
equivalent to (1). So every codeword of weight 132 is in
one of the forms (1) (2) (3) or (4) and is transformable into
form (1). Under the transformation x} = x; + x, 27 = x5, (1)
goes into the form

(64—Db, 68—b, b, b)

and this form has to be equivalent with (1) (2) (3) or (4).
This is only possible if b = 32 or b = 34, but b = 34 is ex-
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cluded by Theorem 3. (Each part e RM (3;27)) for b = 32,
(1) is (32,32,32,36), (2) is (32,32,36,32), (3) is (32,36,35,32),
(4) is (36,32,32,32). Q.E.D.

LemMA 5. Let f(x,, - - -, xn) be a third degree poly-
nomial which is not a second degree polynomial of m
variables. Then f can be transformed by an appropriate
affine transformation into x,x.x; + x; P (%, © * ° , %m)
+xq (%, xm) T (xy, X)) TR, %)
where p, q and r are polynomials of degree 2 and k of
degree 3.

Proof. wlo.g. f(xi, " ,%m) = XXXy + X:1%28 (Xs, * ** , Xm)
+ 2025h (Xay 7, %) F XX (X, 7 Xm) T 0P (X, Xm)
xaq (Xay X)Xl (X ) TR (X, Xm)

where a, b and ¢ have degree 1, p, ¢, and r have degree 2
and k has degree 3. The substitution of

xh=axsFax, %)X =x;,1553
cancels x,x.a (x5, * * -, %n), affects only p, g, and k, which
remain of 2", 29 and 3" degree. Now the substitution
=% +b(xs, - ,xm) X =2, +C(xs, © *  ,%m) Proves
the theorem.

If f(x;, - - - ,%) is a third degree polynomial, we can
divide it in the 8 parts where (x;,%,,x5) = (0,0,0) - - - (1,1,1)
and each part corresponds with a code word in RM (3;2°).
We use the symbols p, g, r and k for the polynomial and
the corresponding codeword.

Form 1. x2%x; + xp (X4~ * 5 %) + %G (Xs, * * * , Xo)

+ xar (x4, © -, %) T k(xy, - - 0, %) is of the form
Position 0l 1| 2|3|4[5|6]|7
X ojojlofo;1}1|1]1
% ojof1]1]0]0]1]|1
X o|j1({0]1]0|1]0]1
} —
1
p P PP
q|4q q|4q
r r r T
k| kjk|k|k|k| k]| Kk

We will need this form constantly in the rest of this
proof.

LemMa 6. If there is a codeword of weight 132 in
RM (3;2°) then when it is transformed into Form 1, the
weight of the position 6 and 7 has to be 36. Therefore (by
Lemma 4) the positions 0 and 1, 2 and 3, 4 and 5 all have
weight 32.
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Proof. Lemma 4 gives that 6, 7 has weight 32 or 36, so
assume 6, 7 has weight 32, and that 2, 3 has weight 32.
2, 3 is an element in RM (3;27) like 0, 1 and 4, 5 and 6, 7.
2,3isk(x, ** ,x0) Fqlxy, L xe) Fxgr(xy, 0 LX)
and has weight 32. 6, Tis k(x,, - =+ ,%) + q(xs, * * * , %)
+p (%, 7, %) F xa7 (%, ***, %) + x; and has weight 32
(by assumption). So we see that 6,7 = 2,3 + p (x,, -, %,)
+ x5 Now |p(xy, -+, %) + x3]; = 2° = 64, so we have
added to 2, 3 (weight 32) a word of weight 64 (p (x,, ", %,)
+ x;) and we get 6,7, which also has weight 32. This is
only possible if the positions of the ones of 2, 3 are a subset
of the positions of the ones of p{x,, - - - ,x,) + x5. This is
equivalent to p(xs ", %,) + 23 = 0 implies k(x,, ", %)
+q(xs, 0 L% txar(xy, -, %) = 0. In general, if a
and b are polynomials over GF (2) and a = 0 implies
b=0 b=ba So k+4+q+axr=(k+ q+x7)(p+ x).
Comparing the coefficients of x; gives

Lemma 7. k= pr + gq.

This implies that the positions 2,3 (of Lemma 5) have the
form

2 3

pr (p+Dr

if r=20, pr and (p + 1) r are both zero. If r =1 then pr
and (p + 1) r are complementary. So 2, 3 has weight equal
to the weight of r. But 2, 3 has weight 32, so |r|, = 32.

Supposition 1. 0,1 has weight 36, so that 4, 5 has weight 32
(like 2,3). If we now compare 4,5 with 6,7 (as we did
above with 2,3 and 6,7), we find k = gr + p. Together
with Lemma 7 this gives r(p + ¢q) =p + g or

LemMa 8. r = 0 implies p + g = 0.

Now we divide positions 0 and 1 into the parts, where
r = 0and r = 1 (remember that |r|; = 32); then 0, 1 looks
like

X3 0 0 1
r 0 1 0
kr=0) k(=1 k=0 kG=1+1
u v w x

v and x are complementary and so together have weight
32. The total weight is 36 (by assumption), so
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Lemma 9. k has weight 2 on the positions where r = 0,

Now we divide positions 6 and 7 into the parts where
r =0 and r = 1. Then 6,7 looks like (by Lemma 8)

X3 0 0 1 1
ro 0 ‘ 1 . 0 . 1 .
k(r=0) k(r=1+ k(r=0+1 k(r=1)+
p(r=1)+ pir=1+
q(r=1) qg(r=1)
a b ¢ d

b =d and e and ¢ are complementary, and so together
have weight 32. The total weight is 32, so b =d = 0. So
position 6 = (a, b) = (a, 0) and has weight 2 by Lemma 9.
But position 6 is a codeword in RM (3;2°) and by
Theorem 1 weight 2 is impossible. Hence, 0, 1 must have
weight 32.

Supposition 2. 4,5 has weight 36 and hence 0,1 has
weight 32. If we now compare 0, 1 with 6,7 (the same way
as done above with 4,5 and 6, 7 and also with 2, 3 and 6,7),
we find k = (p + q) r so r = 0 implies k = 0 and because
k=pr+ g (Lemma 7), r = 0 implies ¢ = 0. If we now
compare 4,5 with 6,7 the same way as at the end of A),
we get the same contradiction. The only assumption made
is that 6, 7 has weight 32. The conclusion is that its weight

is not 32 and by Lemma 3 its weight is 36. Q.ED.
Lemma 10, If xxx; +x,p(x, -, %) + 2. (%, 0, %)
+xgr(x, 0, %) + k(x,, 0, x,) has weight 132, where

p, q and r are of degree 2 and k of degree 3, then |p|, =
lgls = |r|s = 28.

Proof. We have seen that 0,1 in Form 1 has weight 32, so
|r + kls + |k|s =32 and |r|s — k|« = |r + k] = 32
— |k|s so |r|s =32. 6,7 in Form 1 has weight 36,
so|r+1lls—|pt+qg+tkli=|r+p+qg+k+1]|,=36
—|p+q+k|or|r+1|;=36 so |r|;=28. So 28=
|7|s=32. But r ¢ RM (2;2°), so Form 1 gives that |r|; is
28 or 32.

Suppose |r|; = 32. If we look at positions 0 and 1, then
we see that 0 and 1 are complementary on the positions
where r = 1, so have weight 32 on these positions (32 posi-
tions). Because the total weight is 32 (Lemma 6), we see
that r = 0 implies k = 0.

By the same reasoning on 2,3,r = 0 implies k + g = 0,
and on 4,5r = 0 implies kK + p = 0. So we have r = 0 im-
plies (k = 0) and (p = 0) and (g = 0). This gives for posi-
tions 6, 7:
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X3 0 0 1 1
r 1 0 1 0
1 [l l i ]
k+tp+gq 1---10 - - 000 - -« «-.-. 0'1---10------ 000 - -« v 0
! 32—/ 32 ! 32— 32
1 | 1 |
% (r + 1) 0 - f e 000 -+« v« nven-. 001 -« vv-.n. 1 !
L i i ]
1+p+q+x3(1+1) 110 ................... ()l ..... 10 ..... 01 ............. 1
=67 ! 64 — { ] 32—/ 32

So20 +32=36ar! =2but |[k+p+q|,=itk+p+gqg
is position 6) so # = 0 or = 8 by Theorem 1. This is a con-
tradiction, hence |r| = 28. By interchanging x, and x; or

TueorEM 5. In RM (3;2°), A,,, = 0.

Proof. |f|, = 132. Then by Lemma 4 f can be written in
the form Lemma 5, and by Lemma 10 |p| = |g| = |r| =

x. and x; we also get [p| = |q| = 28. QED. 28. Positions 0, 1 have weight 32, so [k + x,r|. = 32.
X3 I 0 T 0 T 1 L 1 1
1 0 1 0
i Il 1 [ ]
k 1- 0----01----- 10 ---- - 0'1 10----. 01 - 10 - - - o'
a 28 —a b 36 —b a 28 —a b 36—0b
xal L. Il
k + x,r 0« o T 0’1 ... 10 0
64 28 36
So2b +28=320rb =2. - 0 - - 01---10------ 00 - .01 - - - - - 11 - .- 10 -« - - 0
a 28 —a b 36 —b a 28 —a b 36 —b

Hence the work k has two ones on the positions where
r = 0. By a similar argument on 2,3 and 4, 3 we see that
the same holds for k + p and k + q. Because k + p + g =

k+(k+p)+ (k+ q), we know that

Lemma 11 k + p + g has == 6 ones on the positions where
r=20.

Now we look again at 6,7: [k +p +q + x,(r + 1)|, = 36.
e ' 0 ' 0 ' 1 ' 1 '
3 1 0 1 0
k+p+gq 1. 10 - - 0'1----10----- 01 10 - - - - 01 ---10------ 0
a 28 —a b 36—b a 28 —a b 36—0Db
% (r+1) 0 - 00 -« -« vvo 0’1 -+« T'
64 28 36
k+p+qg+ax(r+1) f f ' ; |
:6’7 1 10 ..... Ol .« . 10 ..... 01 ..... 10 ..... 0001 ...... 1
a 28 —a b 36—b a 28 —a b 36— b

So 2a + 36 = 36, or a = 0. That means that all the ones of
k + p + g are on the positions where r = 0. But by
Lemma 11 this is a contradiction with Theorem 1 (k + p
+ q e RM (3;2%) unless k +p + g = 0.
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So the only possibility for a codeword of weight 132 is
k=p + q, but then k =p + g and k = g + r and hence
p = q = r, and that means k = p 4+ g = 0 and that is im-
possible because then 32 = |k + x,r|; = |xor|. = |r|s =
28, QED.
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Table 1. RM(3;2%)

Weight w

Words of this weight

Comment

0

0

32

X1X2X3

by (4b); € RM (3;2)

48

X1 {X2xz T XaXs)

by (4b); € RM (3;2°)

56

X1 (xzx3 + X4X5XeX1)
X1X2X3 + X4X5X6

by (4b); € RM (3;2")
by (4a); € RM (3;2°)

64

X1X2

w = 2d; € RM {2;2%)

68

X1 (X2X3 + X4X5) + XgX1X8

Compare with w = 48 and apply
Eq. (2)

72

X1X2X3 T Xaxsxe + Xx1X4

€ RM (3;29

76

X1 {X2x3 T xax5) +

Xgx1xs T X1Xe

80

X1X2X3 + xaxs

€ RM {3;2°)

84

X1 (%exs T xaxs) +
Xex1xs + Xaxs

88

X1 (XzXa + X4X5) + XeX1

€ RM (3;2"); compare with w — 48
and apply Eq. (1)

92

X1X2Xg T+ Xaxsxs + xixs

compare with w = 56 and apply
Eq. {1}

96

xix2 T XxaXs

€ RM (2;2%)

100

X1XaX3 + X4X5Xg +
x1xs + xixs

compare with w = 72 and apply
Eq. (1)

104

X1X2Xs -+ Xax5 + XeX7

compare with w — 80 and apply
Eq. (1); € RM (3;27)

108

X1 (x2xz + xaxs) +

xgx1xs + Xo

compare with w == 48 and apply
Eq. {3)

112

x1x2 + xsxs -+ Xsxe

€ RM (2;2%)

116

X1X2X3 + X4X5 +
xgx1xs + Xo

compare with w = 80 and apply
Eq. (3}

120

x1xz + xaxs T xsxg + xixs

€ RM (2;2%

124

X1x2Xs + Xaxsxg +
xixs  X1X4

128

X1

€ RM(1;2Y); 128 = 2™

a1 -
d=28*=32, 2 I—:a] i 4, so the weights are divisible by 4

This table shows that there are no gaps in RM (3;28)
other than the ones already known.
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Table 2. RM (3;2°)

Weight w| Words of this weight Comment Weight w Words of this weight Comment
0 ] 192 xixz + xaxg € RM (2;2%
64 X1X2Xg by (4b); see w = 32 in RM (3;2% 196 xaxaxz + xaxsxs + x + Apply Eq. (2) on first four terms
+
96 | xi(xaxs + xuxs) by (4b); see w = 48 in RM (3;2%) ux T xoxs¥s
8 —
12 | xilooxs + xxs + xex)) | by (4b); see w = 56 in RM (329 200 | xoxexs +oxoexs + e+ e RM(312); see w =100
Xixzxs + xeXsxs by (4a); see w = 56 in RM (3;2°) e
120 X1 (xaxs + xaxs + by (4b) 204 X1 {xoxs + xaxs + xex7) + | Compare with w = 64
xox1 + Xoxa) xpxaxs T xaxsxo + x
128 Xuxs 128 = 2d; € RM (2;2%) 208 xueaxg - xaxsxs + € RM (3;2°)
132 ? N 212 x1xaxz + Xaxsxs + Xixsxs +
X1Xaxz + X
136 X1 {x2xs + xaxs) + xexixs | € RM(3;2%); see w = 68
in Table 1 216 x1 (xoxs + xaxs) + € RM (3;2%; see w = 108
140 A Xexzxs + xo in Table 1
144 X1 (x2xs + xaxs + xexs) + x, [ € RM {3;27) 220 :::::Z j__ i:xsx‘ + Apply Eq. (2) or (3)
148 xixzXa + Xaxsxe + Xoxsxe compare with s = 112 in this "
table and apply Eq. (2) 224 x1x2 + xaxs + xsxe € RM (2;2%)
152 x1 (xox3 + xaxs) + € RM (3;2%; see w = 76 in XXz + xaxaxs + xa € RM (3;2°)
xexxs + x Table 1
X e ave 228 xixoXs + xaxsxs + xixs + | Compare with w = 72 in Table 1
156 X1X2X3 i Xaxsxe + xixsxe + xr and apply Eq. {3)
xixsXe + X1Xexz
232 xixoxg + xexs + Compare with w = 80 in Table 1
160 X1Xaxs + Xaxs € RM (3;29 XeX1Xs 4 X and apply Eq. (3)
164 :l (xsz3++xX4X5 + XsX'x) + 236 x (Xv(a + X4X5 + Xex'{) +
XeXs T XXsX xaxaxs + Xsxsxs + xg
168 x1 {x2xs + xax5) + € RM (3;2%); see n = 84 in Table 1
x;x(-,xs B_|_ sz: o (3:27); see ave 240 x1x2 F xsxs + xoxs -+ xoxg | € R]A_A !()2I;28]); seew = 110in
able
172 xixaxs + xaxsxe + compare with w = 72 in Table 1 xixz + xaxs + xexaxs + x5 | € RM (3;27); apply Eq. (3)
x1xs + Xixsxo and apply Eq. (2}
" 244 Xaxaxs F xaxsxs + x; +
176 X1 {x2x3 + xax5) + xox7 € RM (3;2") Xe + Xoxsxo
180 x1 (sz-ls_ + xuxs _;l—:m + 248 xixaxs + xaxsxs + xi + € RM (2;2%); see w = 124
Xaxo) T xoxaxs sXex xs + xixs in Table 1
184 x1x2X3 + Xaxsxg + Xoxs € RM (3;2%; see n = 92 in Table 1
252 XiX2X3 T+ Xaxsxg + Apply Eq. (3)
188 x1 {x2xs + xaxs + xex1 + xaxsxo + x1 + x4 + xz
X8X9)
x1 + xoxpxs + x5xext 256 X w = 2"

F[fix;, «* -

9
d=12""%= g4, 2[T]" =4
+xs)|s =k, then [f(xi, * * °

,xs){n = 2k, so half of the words in this table are elements of RM (3;2%
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