Combinational Complexity Measures as a Function of Fan-Out

D. L. Johnson
Communications Research Section

J. E. Savage
Engineering Division, Brown University

L. Welch
Electrical Engineering Dept., University of California at Los Angeles

If $C_s(f_1, \ldots, f_L)$ is the fan-out s combinational complexity of the functions f_1, f_2, \ldots, f_L with respect to straight-line algorithms (or combinational machines) of fan-in r, then it is shown that

$$C_s(f_1, \ldots, f_L) \leq C_s(f_1, \ldots, f_L)$$

$$\leq \left(\frac{d(r-1)}{s-1} + 1\right) C_s(f_1, \ldots, f_L) + \frac{d}{s-1} (L - N)$$

where N is the number of variables on which f_1, \ldots, f_L depend and $d = C_s(I)$ where I is the identity function in one variable. Thus, a well-designed combinational machine or algorithm will not have a fan-out which is more than several times its fan-in.

I. Introduction

In this paper we develop bounds on the fan-out s combinational complexity of functions. These bounds show that the combinational complexity of functions has a weak dependence on fan-out when $s \gg 2$.

II. Bounds on Combinational Complexity

Before we develop the promised bounds, we state the following definitions which are needed in the sequel.

Definition 1. Let Ω be a set of functions over the set Σ, such that if $h_1 : \epsilon \Omega$, then $h_1 : \Sigma^n \rightarrow \Sigma$. Let

$$\Gamma = \Sigma \cup \{X_1, X_2, \cdots, X_k\}$$

Then, an (Ω, Γ) algorithm (or "straight-line" algorithm) is a K-tuple $\beta = (\beta_1, \beta_2, \cdots, \beta_K)$ where either $\beta_k \in \Gamma$ or $\beta_k = (h_1; k_1, k_2, \cdots, k_n)$, $h_1 \in \Omega$, $1 \leq k_1 < k$. The set of functions $(\beta_1, \beta_2, \cdots, \beta_K)$ is associated with β where $\beta_k = \beta_k$ if $\beta_k \in \Gamma$ and $\beta_k = h_i (\beta_{k_1}, \cdots, \beta_{k_{n_1}})$ if

$$\beta_k = (h_i; k_1, k_2, \cdots, k_n)$$
An algorithm β is said to compute the functions
\[f_t : \Sigma^m \rightarrow \Sigma, \quad m_i \leq N, \quad 1 \leq t \leq L. \]
if there exist $\beta_{m_1}, \ldots, \beta_{m_L}$ such that $f_t = \beta_{m_t}$.

The fan-in of Ω is
\[r = \max_i n_i \]
where $h_i : \Omega, h_i : \Sigma^m \rightarrow \Sigma$. If β computes f_1, f_2, \ldots, f_L where $f_t = \beta_{m_t}, 1 \leq t \leq L$, let γ_i the number of steps of β which use β_i, if $\beta_i \notin \Sigma$, and $\gamma_i = 0$, otherwise and let $\theta_i = \gamma_i$, $i \neq m_i, m_{i_2}, \ldots, m_L$ and $\theta_i = \gamma_i + 1$ otherwise. Then, the fan-out of β is
\[s = \max_i \theta_i \]

Definition 2. The combinational complexity with fan-out s of
\[f_t : \Sigma^m \rightarrow \Sigma, \quad 1 \leq t \leq L, \quad C_s(f_1, \ldots, f_L) \]
is the smallest number of steps $\beta_1 \land \Gamma$ of any $\Omega(\Gamma)$ algorithm which computes these functions, if one such exists; otherwise $C_s(f_1, \ldots, f_L)$ is ∞. Associated with any $\Omega(\Gamma)$ algorithm is a graph G in which vertices correspond to steps of the algorithm and edges are directed and ordered from vertices corresponding to $\beta_{k_1}, \ldots, \beta_{k_{n_i}}$, to the vertex corresponding to β_k if $\beta_k = (h_i, \beta_{k_1}, \ldots, \beta_{k_{n_i}})$. Vertices corresponding to steps $\beta_k \in \Gamma$ are called source vertices.

Combinational machines are circuits which correspond to the graphs of $\Omega(\Gamma)$ algorithms in which $\Sigma = \{0, 1\}$ and Ω is a set of Boolean functions; thus, there is an equivalence between combinational machines and straight-line algorithms. These algorithms are called "straight-line" because they do not permit loops or conditional branching. We now state the principal result of this article.

Theorem. Let f_1, \ldots, f_L be distinct functions over Σ which depend on N variables. Let Ω have fan-in r and let it be such that an $\Omega(\Gamma)$ algorithm exists for the identity function I in one variable. Then
\[C_s(f_1, \ldots, f_L) \leq C_s(f_1, \ldots, f_L) \]
\[\leq \frac{d(r - 1)}{s - 1} + 1 \]
\[\times C_s(f_1, \ldots, f_L) + \frac{d}{s - 1}(L - N) \]
where $d = C_s(I)$.

Proof. Let β be a straight-line algorithm with fan-out s which computes f_1, \ldots, f_L with $C_s(f_1, \ldots, f_L)$ operations. The directed graph of β has N source vertices and L vertices identified with the distinct functions f_1, \ldots, f_L. To the graph G of β add L vertices with edges directed into them from the vertices identified with these functions. The number of edges incident upon vertices in this new graph G' is at most $rC_s(f_1, \ldots, f_L) + L$ since each of the original vertices has at most r edges directed into them. Thus, if θ_i edges are directed away from the ith vertex of G' then
\[\sum_i \theta_i \leq rC_s(f_1, \ldots, f_L) + L \]
where the sum is over all vertices except those associated with constants.

Since Ω is complete, the identity function on one variable $I(x)$ can be constructed with some number, e.g., d, of elements from it with fan-out s. For each i, if the ith vertex of the graph G' has θ_i edges directed away from it, we can add $h(\theta_i, s)$ copies of the algorithm realizing $I(x)$ to produce a graph G'' which has fan-out s. Here
\[h(\theta_i, s) \leq \frac{\theta_i - 1}{s - 1} \]
so the number of elements in G'' is bounded above by
\[\frac{d}{s - 1} \sum_i (\theta_i - 1) + C_s \]
where the sum on i is taken over all vertices of G including all source vertices other than those associated with constants. Since $C_s(f_1, \ldots, f_L)$ is the minimum number of operations required to realize f_1, \ldots, f_L, with fan-out s, it follows that
\[C_s(f_1, \ldots, f_L) \leq \frac{d}{s - 1} (rC_s(f_1, \ldots, f_L)) + L - C_s(N) + C_s \]

The left-hand equality of the theorem follows since $C_s(f_1, \ldots, f_L)$ is a non-increasing function of s. QED.

The significance of this result is that all of the complexity measures C_2, C_3, \ldots, C_s, differ by at most a constant. Also, C_s approaches C_s with increasing s when r is fixed. For many sets $\Omega, d = 1$; for example, this is true for the set of addition, subtraction, multiplication and divi-
sion over the reals and the set of AND, OR and NOT over the set \(\{0, 1\} \). However, \(d = 2 \) for the set \(\Omega \) containing only NAND over \(\{0, 1\} \).

The combinational complexity of a function with fan-out 1, \(C_1 \), can differ substantially from its combinational complexity with unlimited fan-out. Subbotovskaya (Ref. 1) has shown that the Boolean function \(f(x_1, \cdots, x_N) = X_1 \oplus \cdots \oplus X_N \) where \(\oplus \) denotes the EXCLUSIVE OR has \(C_1(f) > a_1N^{3/2} \) for some constant \(a_1 \) when \(\Omega \) consists of AND, OR and NOT and \(C_\infty(f) < a_2N \) for some other constant \(a_2 \).

Reference